First, simplify you input:
GS65new = Simplify[GS65]
-(((-1 + wb) ((-1 + wb)^3 wb (1 + 2 wb + 4 wb^2 + 8 wb^3) + 15 wa^2 (-1 + wb)^4 wb^5 (-15 - 41 wb + 142 wb^2 - 132 wb^3 + 40 wb^4) - 5 wa^3 (-1 + wb)^3 wb^5 (165 - 389 wb - 708 wb^2 + 2264 wb^3 - 1952 wb^4 + 560 wb^5) + 5 wa^4 (-1 + wb)^2 wb^5 (-255 + 1613 wb - 2402 wb^2 - 984 wb^3 + 4992 wb^4 - 4144 wb^5 + 1120 wb^6) - 5 wa^7 wb^5 (-15 + 244 wb - 1344 wb^2 + 3564 wb^3 - 5166 wb^4 + 4228 wb^5 - 1848 wb^6 + 336 wb^7) - 3 wa^5 wb^5 (-345 + 3812 wb - 14607 wb^2 + 25702 wb^3 - 19648 wb^4 - 878 wb^5 + 12180 wb^6 - 7896 wb^7 + 1680 wb^8) + wa^6 wb^5 (-435 + 5951 wb - 28026 wb^2 + 63316 wb^3 - 75574 wb^4 + 45430 wb^5 - 8148 wb^6 - 4200 wb^7 + 1680 wb^8) - wa (-1 + wb)^3 (-1 + wb^4 - 11 wb^5 + 209 wb^6 - 457 wb^7 + 446 wb^8 - 212 wb^9 + 40 wb^10)))/((1 - 2 wb + 2 wb^2) (-wb + wa (-1 + 2 wb))))
GS56new = Simplify[GS56]
-((wa (-1 + wb)^5 (1 + 2 wb) (1 + 4 wb^2) ((-1 + wb)^5 (1 + 5 wb) - 15 wa (-1 + wb)^4 wb (1 + 5 wb) + 5 wa^2 (-1 + wb)^3 wb (-11 + wb + 70 wb^2) - 5 wa^3 (-1 + wb)^2 wb (17 - 69 wb - 28 wb^2 + 140 wb^3) + 5 wa^6 wb (1 - 14 wb + 56 wb^2 - 84 wb^3 + 42 wb^4) + 3 wa^4 wb (23 - 202 wb + 473 wb^2 - 252 wb^3 - 252 wb^4 + 210 wb^5) - wa^5 wb (29 - 331 wb + 1064 wb^2 - 1176 wb^3 + 210 wb^4 + 210 wb^5)))/((1 - 2 wb + 2 wb^2) (-wb + wa (-1 + 2 wb))))
Then calculate GroebnerBase
(gb = GroebnerBasis[{GS56new - 25/100, GS65new - 75/100}, {wa, wb}]) // Length
4
Taking gb elements which includes both variables we get
NSolve[{gb[[1]] == 0, gb[[3]] == 0}, {wa, wb}]
{{wb -> -0.421257, wa -> -0.421257}, {wb -> -0.421257, wa -> 0.0231239}, {wb -> -0.421257, wa -> 0.365881}, {wb -> -0.421257, wa -> 0.703403 - 0.315787 I}, {wb -> -0.421257, wa -> 0.703403 + 0.315787 I}, {wb -> -0.421257, wa -> 1.15004 - 0.190458 I}, {wb -> -0.421257, wa -> 1.15004 + 0.190458 I}, {wb -> -0.421257, wa -> -0.421257}, {wb -> -0.421257, wa -> 0.0231239}, {wb -> -0.421257, wa -> 0.365881}, {wb -> -0.421257, wa -> 0.703403 - 0.315787 I}, {wb -> -0.421257, wa -> 0.703403 + 0.315787 I}, {wb -> -0.421257, wa -> 1.15004 - 0.190458 I}, {wb -> -0.421257, wa -> 1.15004 + 0.190458 I}, {wb -> -0.0023513 + 0.420374 I, wa -> -0.051519 - 0.00405429 I}, {wb -> -0.0023513 + 0.420374 I, wa -> -0.0023513 + 0.420374 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 0.0793953 + 0.468781 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 0.699276 - 0.192388 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 0.774672 + 0.677983 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 1.17814 - 0.187992 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 1.27259 + 0.290135 I}, {wb -> -0.0023513 + 0.420374 I, wa -> -0.051519 - 0.00405429 I}, {wb -> -0.0023513 + 0.420374 I, wa -> -0.0023513 + 0.420374 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 0.0793953 + 0.468781 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 0.699276 - 0.192388 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 0.774672 + 0.677983 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 1.17814 - 0.187992 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 1.27259 + 0.290135 I}, {wb -> -0.0023513 - 0.420374 I, wa -> -0.051519 + 0.00405429 I}, {wb -> -0.0023513 - 0.420374 I, wa -> -0.0023513 - 0.420374 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 0.0793953 - 0.468781 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 0.699276 + 0.192388 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 0.774672 - 0.677983 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 1.17814 + 0.187992 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 1.27259 - 0.290135 I}, {wb -> -0.0023513 - 0.420374 I, wa -> -0.051519 + 0.00405429 I}, {wb -> -0.0023513 - 0.420374 I, wa -> -0.0023513 - 0.420374 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 0.0793953 - 0.468781 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 0.699276 + 0.192388 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 0.774672 - 0.677983 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 1.17814 + 0.187992 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 1.27259 - 0.290135 I}, {wb -> 0.5, wa -> -1.9389}, {wb -> 0.5, wa -> -0.400713 - 0.332275 I}, {wb -> 0.5, wa -> -0.400713 + 0.332275 I}, {wb -> 0.5, wa -> 0.5}, {wb -> 0.5, wa -> 1.40071 - 0.332275 I}, {wb -> 0.5, wa -> 1.40071 + 0.332275 I}, {wb -> 0.5, wa -> 2.9389}, {wb -> 0.5, wa -> -1.9389}, {wb -> 0.5, wa -> -0.400713 - 0.332275 I}, {wb -> 0.5, wa -> -0.400713 + 0.332275 I}, {wb -> 0.5, wa -> 0.5}, {wb -> 0.5, wa -> 1.40071 - 0.332275 I}, {wb -> 0.5, wa -> 1.40071 + 0.332275 I}, {wb -> 0.5, wa -> 2.9389}, {wb -> 1.00235 - 0.420374 I, wa -> -0.272591 - 0.290135 I}, {wb -> 1.00235 - 0.420374 I, wa -> -0.178142 + 0.187992 I}, {wb -> 1.00235 - 0.420374 I, wa -> 0.225328 - 0.677983 I}, {wb -> 1.00235 - 0.420374 I, wa -> 0.300724 + 0.192388 I}, {wb -> 1.00235 - 0.420374 I, wa -> 0.920605 - 0.468781 I}, {wb -> 1.00235 - 0.420374 I, wa -> 1.00235 - 0.420374 I}, {wb -> 1.00235 - 0.420374 I, wa -> 1.05152 + 0.00405429 I}, {wb -> 1.00235 - 0.420374 I, wa -> -0.272591 - 0.290135 I}, {wb -> 1.00235 - 0.420374 I, wa -> -0.178142 + 0.187992 I}, {wb -> 1.00235 - 0.420374 I, wa -> 0.225328 - 0.677983 I}, {wb -> 1.00235 - 0.420374 I, wa -> 0.300724 + 0.192388 I}, {wb -> 1.00235 - 0.420374 I, wa -> 0.920605 - 0.468781 I}, {wb -> 1.00235 - 0.420374 I, wa -> 1.00235 - 0.420374 I}, {wb -> 1.00235 - 0.420374 I, wa -> 1.05152 + 0.00405429 I}, {wb -> 1.00235 + 0.420374 I, wa -> -0.272591 + 0.290135 I}, {wb -> 1.00235 + 0.420374 I, wa -> -0.178142 - 0.187992 I}, {wb -> 1.00235 + 0.420374 I, wa -> 0.225328 + 0.677983 I}, {wb -> 1.00235 + 0.420374 I, wa -> 0.300724 - 0.192388 I}, {wb -> 1.00235 + 0.420374 I, wa -> 0.920605 + 0.468781 I}, {wb -> 1.00235 + 0.420374 I, wa -> 1.00235 + 0.420374 I}, {wb -> 1.00235 + 0.420374 I, wa -> 1.05152 - 0.00405429 I}, {wb -> 1.00235 + 0.420374 I, wa -> -0.272591 + 0.290135 I}, {wb -> 1.00235 + 0.420374 I, wa -> -0.178142 - 0.187992 I}, {wb -> 1.00235 + 0.420374 I, wa -> 0.225328 + 0.677983 I}, {wb -> 1.00235 + 0.420374 I, wa -> 0.300724 - 0.192388 I}, {wb -> 1.00235 + 0.420374 I, wa -> 0.920605 + 0.468781 I}, {wb -> 1.00235 + 0.420374 I, wa -> 1.00235 + 0.420374 I}, {wb -> 1.00235 + 0.420374 I, wa -> 1.05152 - 0.00405429 I}, {wb -> 1.42126, wa -> -0.150039 - 0.190458 I}, {wb -> 1.42126, wa -> -0.150039 + 0.190458 I}, {wb -> 1.42126, wa -> 0.296597 - 0.315787 I}, {wb -> 1.42126, wa -> 0.296597 + 0.315787 I}, {wb -> 1.42126, wa -> 0.634119}, {wb -> 1.42126, wa -> 0.976876}, {wb -> 1.42126, wa -> 1.42126}, {wb -> 1.42126, wa -> -0.150039 - 0.190458 I}, {wb -> 1.42126, wa -> -0.150039 + 0.190458 I}, {wb -> 1.42126, wa -> 0.296597 - 0.315787 I}, {wb -> 1.42126, wa -> 0.296597 + 0.315787 I}, {wb -> 1.42126, wa -> 0.634119}, {wb -> 1.42126, wa -> 0.976876}, {wb -> 1.42126, wa -> 1.42126}}
which does not match your claim. Similarly, for other case we have:
(gb1 = GroebnerBasis[{GS56new - Rationalize[0.327531, 0], GS65new - Rationalize[0.827531, 0]}, {wa, wb}]) // Length
4
NSolve[{gb1[[1]] == 0, gb[[3]] == 0}, {wa, wb}]
{{wb -> -0.421257, wa -> -0.421257}, {wb -> -0.421257, wa -> 0.0231239}, {wb -> -0.421257, wa -> 0.365881}, {wb -> -0.421257, wa -> 0.703403 - 0.315787 I}, {wb -> -0.421257, wa -> 0.703403 + 0.315787 I}, {wb -> -0.421257, wa -> 1.15004 - 0.190458 I}, {wb -> -0.421257, wa -> 1.15004 + 0.190458 I}, {wb -> -0.384258, wa -> -2.00696}, {wb -> -0.384258, wa -> -0.814158}, {wb -> -0.384258, wa -> -0.0321924 - 0.434251 I}, {wb -> -0.384258, wa -> -0.0321924 + 0.434251 I}, {wb -> -0.384258, wa -> 1.07842 - 0.461507 I}, {wb -> -0.384258, wa -> 1.07842 + 0.461507 I}, {wb -> -0.384258, wa -> 1.62828}, {wb -> -0.00294383 - 0.38345 I, wa -> -0.356037 - 0.0105394 I}, {wb -> -0.00294383 - 0.38345 I, wa -> -0.0682849 - 2.03837 I}, {wb -> -0.00294383 - 0.38345 I, wa -> 0.0271765 - 0.415577 I}, {wb -> -0.00294383 - 0.38345 I, wa -> 0.144308 + 0.378458 I}, {wb -> -0.00294383 - 0.38345 I, wa -> 1.03701 - 0.484021 I}, {wb -> -0.00294383 - 0.38345 I, wa -> 1.0963 + 0.378683 I}, {wb -> -0.00294383 - 0.38345 I, wa -> 1.54464 - 0.0621063 I}, {wb -> -0.00294383 + 0.38345 I, wa -> -0.356037 + 0.0105394 I}, {wb -> -0.00294383 + 0.38345 I, wa -> -0.0682849 + 2.03837 I}, {wb -> -0.00294383 + 0.38345 I, wa -> 0.0271765 + 0.415577 I}, {wb -> -0.00294383 + 0.38345 I, wa -> 0.144308 - 0.378458 I}, {wb -> -0.00294383 + 0.38345 I, wa -> 1.03701 + 0.484021 I}, {wb -> -0.00294383 + 0.38345 I, wa -> 1.0963 - 0.378683 I}, {wb -> -0.00294383 + 0.38345 I, wa -> 1.54464 + 0.0621063 I}, {wb -> -0.0023513 - 0.420374 I, wa -> -0.051519 + 0.00405429 I}, {wb -> -0.0023513 - 0.420374 I, wa -> -0.0023513 - 0.420374 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 0.0793953 - 0.468781 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 0.699276 + 0.192388 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 0.774672 - 0.677983 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 1.17814 + 0.187992 I}, {wb -> -0.0023513 - 0.420374 I, wa -> 1.27259 - 0.290135 I}, {wb -> -0.0023513 + 0.420374 I, wa -> -0.051519 - 0.00405429 I}, {wb -> -0.0023513 + 0.420374 I, wa -> -0.0023513 + 0.420374 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 0.0793953 + 0.468781 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 0.699276 - 0.192388 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 0.774672 + 0.677983 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 1.17814 - 0.187992 I}, {wb -> -0.0023513 + 0.420374 I, wa -> 1.27259 + 0.290135 I}, {wb -> 0.436467, wa -> -3.19878}, {wb -> 0.436467, wa -> -0.376344 - 0.188877 I}, {wb -> 0.436467, wa -> -0.376344 + 0.188877 I}, {wb -> 0.436467, wa -> 0.334027}, {wb -> 0.436467, wa -> 1.36623 - 0.459684 I}, {wb -> 0.436467, wa -> 1.36623 + 0.459684 I}, {wb -> 0.436467, wa -> 2.21998}, {wb -> 0.5, wa -> -1.9389}, {wb -> 0.5, wa -> -0.400713 - 0.332275 I}, {wb -> 0.5, wa -> -0.400713 + 0.332275 I}, {wb -> 0.5, wa -> 0.5}, {wb -> 0.5, wa -> 1.40071 - 0.332275 I}, {wb -> 0.5, wa -> 1.40071 + 0.332275 I}, {wb -> 0.5, wa -> 2.9389}, {wb -> 1.00165 - 0.449612 I, wa -> -0.528678 - 0.0307153 I}, {wb -> 1.00165 - 0.449612 I, wa -> -0.064596 + 0.384441 I}, {wb -> 1.00165 - 0.449612 I, wa -> -0.0492989 - 0.491668 I}, {wb -> 1.00165 - 0.449612 I, wa -> 0.883162 - 2.14683 I}, {wb -> 1.00165 - 0.449612 I, wa -> 0.891719 + 0.347417 I}, {wb -> 1.00165 - 0.449612 I, wa -> 0.986124 - 0.425576 I}, {wb -> 1.00165 - 0.449612 I, wa -> 1.37354 - 0.0410766 I}, {wb -> 1.00165 + 0.449612 I, wa -> -0.528678 + 0.0307153 I}, {wb -> 1.00165 + 0.449612 I, wa -> -0.064596 - 0.384441 I}, {wb -> 1.00165 + 0.449612 I, wa -> -0.0492989 + 0.491668 I}, {wb -> 1.00165 + 0.449612 I, wa -> 0.883162 + 2.14683 I}, {wb -> 1.00165 + 0.449612 I, wa -> 0.891719 - 0.347417 I}, {wb -> 1.00165 + 0.449612 I, wa -> 0.986124 + 0.425576 I}, {wb -> 1.00165 + 0.449612 I, wa -> 1.37354 + 0.0410766 I}, {wb -> 1.00235 - 0.420374 I, wa -> -0.272591 - 0.290135 I}, {wb -> 1.00235 - 0.420374 I, wa -> -0.178142 + 0.187992 I}, {wb -> 1.00235 - 0.420374 I, wa -> 0.225328 - 0.677983 I}, {wb -> 1.00235 - 0.420374 I, wa -> 0.300724 + 0.192388 I}, {wb -> 1.00235 - 0.420374 I, wa -> 0.920605 - 0.468781 I}, {wb -> 1.00235 - 0.420374 I, wa -> 1.00235 - 0.420374 I}, {wb -> 1.00235 - 0.420374 I, wa -> 1.05152 + 0.00405429 I}, {wb -> 1.00235 + 0.420374 I, wa -> -0.272591 + 0.290135 I}, {wb -> 1.00235 + 0.420374 I, wa -> -0.178142 - 0.187992 I}, {wb -> 1.00235 + 0.420374 I, wa -> 0.225328 + 0.677983 I}, {wb -> 1.00235 + 0.420374 I, wa -> 0.300724 - 0.192388 I}, {wb -> 1.00235 + 0.420374 I, wa -> 0.920605 + 0.468781 I}, {wb -> 1.00235 + 0.420374 I, wa -> 1.00235 + 0.420374 I}, {wb -> 1.00235 + 0.420374 I, wa -> 1.05152 - 0.00405429 I}, {wb -> 1.42126, wa -> -0.150039 - 0.190458 I}, {wb -> 1.42126, wa -> -0.150039 + 0.190458 I}, {wb -> 1.42126, wa -> 0.296597 - 0.315787 I}, {wb -> 1.42126, wa -> 0.296597 + 0.315787 I}, {wb -> 1.42126, wa -> 0.634119}, {wb -> 1.42126, wa -> 0.976876}, {wb -> 1.42126, wa -> 1.42126}, {wb -> 1.45037, wa -> -0.630092}, {wb -> 1.45037, wa -> -0.0748663 - 0.462553 I}, {wb -> 1.45037, wa -> -0.0748663 + 0.462553 I}, {wb -> 1.45037, wa -> 1.02769 - 0.432315 I}, {wb -> 1.45037, wa -> 1.02769 + 0.432315 I}, {wb -> 1.45037, wa -> 1.71992}, {wb -> 1.45037, wa -> 3.70918}}
Taking other Groebner base elements your will get more/less roots.
Edit1 As it was correctly noted in the comment below, I try to select all solutions which can be given probability interpretation.
Note that in the code below I removed (command Most[]) one pair of GroebnerBase, which actually cases the problem for NSolve. (The coefficients of Groebner base seems are very large, may be somebody will comment on that)
positiveSols = Select[Flatten[ NSolve[#, {wa, wb}] & /@ Most[(Part[gb1, #] & /@ Subsets[Range[4], {2}])], 1], MatchQ[({wa, wb} /. #), {_?Positive, _?Positive}] &]
{{wb -> 0.436467, wa -> 0.436467}, {wb -> 0.436467, wa -> 2.25209}, {wb -> 0.5, wa -> 0.6}, {wb -> 0.5, wa -> 2.9374}, {wb -> 1.42126, wa -> 0.646862}, {wb -> 1.42126, wa -> 0.98405}, {wb -> 1.42126, wa -> 1.41911}, {wb -> 1.45037, wa -> 0.63115}, {wb -> 1.45037, wa -> 0.980516}, {wb -> 1.45037, wa -> 1.45037}, {wb -> 0.5, wa -> 0.194035}, {wb -> 0.5, wa -> 2.26841}, {wb -> 1.45037, wa -> 0.63115}, {wb -> 1.45037, wa -> 0.980516}, {wb -> 1.45037, wa -> 1.45037}, {wb -> 1.42126, wa -> 0.646862}, {wb -> 1.42126, wa -> 0.98405}, {wb -> 1.42126, wa -> 1.41911}, {wb -> 0.5, wa -> 0.6}, {wb -> 0.5, wa -> 2.9374}, {wb -> 0.436467, wa -> 0.436467}, {wb -> 0.436467, wa -> 2.25209}}
And at last
probabilitySols = Select[positiveSols, MatchQ[({wa, wb} /. #), {_?(0 <= # <= 1 &), _?(0 <= # <= 1 &)}] &]
{{wb -> 0.436467, wa -> 0.436467}, {wb -> 0.436467, wa -> 0.436467}, {wb -> 0.5, wa -> 0.6}, {wb -> 0.5, wa -> 0.194035}, {wb -> 0.5, wa -> 0.6}}
we see that mentioned solution {wb -> 0.5, wa -> 0.6} indeed is in the list. Once again, this list of solutions is still not complete, because one pair of Groebner base equations was removed.