I reproduced the algorithm from this post and I tried to use it on your example: An Easy Way To Solve The Solvable Quintic Using Two Sextics.
As mentioned in the article, for the quintic equation:
$$a x^5 + b x^4 + c x^3 + d x^2 + e x + f=0$$
If the equation is solvable, then the solution is of the form:
$$\begin{bmatrix} x_1\\x_2\\x_3\\x_4\\x_5 \end{bmatrix}= \begin{bmatrix} 1 & 1 & 1 & 1 \\ e^{+\frac{2 i \pi }{5}} & e^{+\frac{4 i \pi }{5}} & e^{-\frac{4 i \pi}{5}} & e^{-\frac{2 i \pi}{5}} \\ e^{+\frac{4 i \pi }{5}} & e^{-\frac{2 i \pi}{5}} & e^{+\frac{2 i \pi }{5}} & e^{-\frac{4 i \pi}{5}} \\ e^{-\frac{4 i \pi}{5}} & e^{+\frac{2 i \pi }{5}} & e^{-\frac{2 i \pi}{5}} & e^{+\frac{4 i \pi }{5}} \\ e^{-\frac{2 i \pi}{5}} & e^{-\frac{4 i \pi}{5}} & e^{+\frac{4 i \pi }{5}} & e^{+\frac{2 i \pi }{5}} \\ \end{bmatrix} \cdot \begin{bmatrix} \sqrt[5]{\zeta_1}\\ \sqrt[5]{\zeta_2}\\ \sqrt[5]{\zeta_3}\\ \sqrt[5]{\zeta_4}\\ \end{bmatrix}-\frac{b}{5a}$$
So my algorithm only gives $\zeta_1,\zeta_2,\zeta_3,\zeta_4$.
simplify[e_] := FullSimplify[ ToRadicals@e, ComplexityFunction -> (100 Count[#, Root[__], All] + LeafCount[#]&) ]; getCoefficient[a_, b_, c_, d_, e_, f_] := { (-2 b^2 + 5 a c) / (50 a^2), (4 b^3 - 15 a b c + 25 a^2 d) / (250 a^3), (-3 b^4 + 15 a b^2 c - 50 a^2 b d + 125 a^3 e) / (625 a^4), (b (4 b^4 - 25 a b^2 c + 125 a^2 b d - 625 a^3 e)) / (3125 a^5) + f / a }; findGenerator[a_, b_, c_, d_] := Block[ {\[CapitalDelta], d1, d2, g1, g2, discriminant, generator}, \[CapitalDelta] = 16 c^2 (-200 a^3 b^2 - 135 b^4 + 400 a^4 c + 360 a b^2 c - 160 a^2 c^2 + 16 c^3) + 32 b (4 b^2 (40 a^3 + 27 b^2) - 45 a (8 a^3 + 7 b^2) c + 140 a^2 c^2 - 20 c^3) d + 8 (432 a^5 + 330 a^2 b^2 - 180 a^3 c + 45 b^2 c + 20 a c^2) d^2 - 120 a b d^3 + d^4; d1 = { 3125, 0, -625 (3 a^2 + c), 0, 25 (15 a^4 + 8 a b^2 - 2 a^2 c + 3 c^2 - 2 b d), Sqrt[\[CapitalDelta]], -25 a^6 - 40 a^3 b^2 - 16 b^4 + 35 a^4 c + 28 a b^2 c - 11 a^2 c^2 + c^3 - 2 b (a^2 + c) d + a d^2 }; d2 = { 3125, 0, 625 (-3 b^2 + 4 a c), 0, 25 (15 b^4 - 40 a b^2 c + 20 a^2 c^2 - 4 c^3 + 8 a^2 b d + 6 b c d - 2 a d^2), d Sqrt[\[CapitalDelta]], -25 (b^3 - 2 a b c)^2 - 2 b (20 a^2 - 3 c) (b^2 - 2 a c) d - (16 a^4 + 2 a b^2 - 8 a^2 c + c^2) d^2 + b d^3 }; g1 = guessGenerator[d1]; g2 = guessGenerator[d2]; If[Length@g1 == 0, Return[Failure["Unable to solve", <||>]]]; If[Length@g2 == 0, Return[Failure["Unable to solve", <||>]]]; {First@guessGenerator[d1], First@guessGenerator[d2]} ]; guessGenerator[discriminant_] := Block[ {kx, ks}, ks = NSolve[FromDigits[discriminant, kx] == 0, kx,Reals, WorkingPrecision -> 60]; Select[RootApproximant[kx /. ks, 2], FromDigits[discriminant, #] == 0&] ]; solveResolvent[a_, b_, c_, d_, p_, q_] := Block[ {D5Resolvent, F5Resolvent, kx, var}, D5Resolvent = {1, d, 2 a^5 - 5 a^3 c - 4 b^2 c + a (c^2 + 2 b d), -a^5 d, a^10}; F5Resolvent = { p, p (d - 20 p q), -p (2 a^5 + 2 a^2 b^2 + 20 a^3 p^2 + 10 a p^4 + b^2 (c - 6 p^2)) - 2 b (a^3 + b^2 - a c + 3 a p^2) q + (4 a^2 - c) p q^2 + 2 b q^3, -5 a^6 b p + a^7 q + a^5 (-c + p^2) q + a p^3 (-4 b^3 + 3 c p q - 13 p^3 q + 4 b q^2) + a^3 p (-4 b^3 - 2 c p q + 11 p^3 q + 4 b q^2) + a^2 p^2 (-2 b c p + 9 b p^3 + 6 b^2 q - 6 q^3) + a^4 (3 b c p - 5 b p^3 + b^2 q - q^3) + p^4 (b (-c p + p^3) + b^2 q - q^3), p (a^2 - p^2)^5 }; If[ p == 0, var /. Solve[FromDigits[D5Resolvent, var] == 0, var], var /. Solve[FromDigits[F5Resolvent, var] == 0, var] ] ]; getPseudoRoot[a_, b_, c_, d_, e_, f_] := Block[ {p, q, r, s, g, u, v}, {p, q, r, s} = getCoefficient[a, b, c, d, e, f]; g = findGenerator[p, q, r, s]; If[ FailureQ@g, Return@g, {u, v} = g ]; {-b / (5a), solveResolvent[p, q, r, s, u, v]} ];
coeff = Reverse@CoefficientList[-1 + 2 #1 + 3 #1^2 + #1^5 &[x], x]; coeff = Reverse@CoefficientList[-6 - 10 #1 - 10 #1^2 + #1^5 &[x], x]; {a, b} = getPseudoRoot @@ coeff x1 = Tr@Surd[b, 5] + a (*x1//RootReduce*) RootApproximant[x1, 5]
It successfully found a root of the equation $x^5-10 x^2-10 x-6=0$ is $x_1=\sqrt[5]{2}+2^{2/5}$.
But it failed in your example.
After research, I found that this is not a problem of the algorithm.
The problem is that RootApproximant in guessGenerator doesn't fit the huge coefficients well, I don't know how to fix this.
After manual fitting, I found $\{p,q\}=\left\{-58275659776 \sqrt{5},26315474732392120320 \sqrt{5}\right\}$
So we have:
\begin{aligned} -\frac{x_1}{2048} &=220492\\ &+ 2^{4/5} \sqrt[5]{5 \left(-4654314431386444935 \sqrt{5}+253 \sqrt{47 \left(46404398781233715250377772758698 \sqrt{5}+223185962057628283872014741096225\right)}+6514418947470803086506950\right)}\\ &+2^{4/5} \sqrt[5]{5 \left(-4654314431386444935 \sqrt{5}-253 \sqrt{47 \left(46404398781233715250377772758698 \sqrt{5}+223185962057628283872014741096225\right)}+6514418947470803086506950\right)}\\ &+2^{4/5} \sqrt[5]{5 \left(4654314431386444935 \sqrt{5}+253 \sqrt{47 \left(223185962057628283872014741096225-46404398781233715250377772758698 \sqrt{5}\right)}+6514418947470803086506950\right)}\\ &+2^{4/5} \sqrt[5]{5 \left(4654314431386444935 \sqrt{5}-253 \sqrt{47 \left(223185962057628283872014741096225-46404398781233715250377772758698 \sqrt{5}\right)}+6514418947470803086506950\right)} \end{aligned}
eq = 1152921504606846976 + 99923616732282880 x + 3740744716124160 x^2 - 2794496983040 x^3 + 2257838080 x^4 + x^5; coeff = Reverse@CoefficientList[eq, x]; {a, b} = { -451567616, solveResolvent[ -203913591269621760, 184161674750051152297984000, -124742258113864494225907240665088000, 75106136945420552127297065232870932480000000, -58275659776 Sqrt[5], 26315474732392120320 Sqrt[5] ] } x1 = N[Tr@Surd[b, 5] + a, 50] First[x /. NSolve[eq == 0, WorkingPrecision -> 50]] (*x1//RootReduce*) RootApproximant[x1, 5]
After the verification of the numerical value, it is found that the fifty digits are exactly the same.