The code
testseq = {0, 0, 4, -3, 2, 5, 11}; testfunction1[x_] := FromDigits[Reverse[testseq], x]; Print[testfunction1[x]]; testfunction2[x_] := Dot[testseq, Power[x, Range[Length[testseq]] - 1]]; Print[testfunction2[x]]; gives me
(4 - 3x)x^2 + x^4(2 + 5x + 11x^2)
4x^2 - 3x^3 + 2x^4 + 5x^5 + 11x^6
The first result is surprising, the second as expected. Why do I get the first result?
FromDigits[]is in fact a documented way for producing polynomials that are in Horner form. $\endgroup$f[x]gives the same result asPrint[f[x]];. See this answer for further useful info. $\endgroup$