In a first step you can eliminate r1 ,r2:
erg = Simplify[ ExpToTrig[Solve[1 - r2 Exp[I θ2] == r1 Exp[I θ1], Element[{r1, r2}, Reals]]], {Element[{θ1, θ2}, Reals], 0 <= θ1 < 2 Pi, -Pi <= θ2 < Pi}][[1]]
{r1 -> -Csc[θ1 - θ2] Sin[θ2], r2 -> Csc[θ1 - θ2] Sin[θ1]}
With this result f[z] evaluates to
Csc[θ1 - θ2]^2 Sin[θ1] Sin[θ2] (Cos[θ1 + θ2] + I Sin[θ1 + θ2])
and can be plotted in the parameter space of θ1 and θ2.
0 down vote
If x,y depend on teta1, teta2 you can use the function ParametricPlot3D[] with the two parameters teta1, teta2 as arguments to plot f[x+i y].
Sorry, I(as a new user...) don't know why, but I'm not allowed to comment your notes. Though I have to edit my answer:
You're right with the correction. The two surfaces in your plot probably are the real and imaginary part of f. You've to specify the output in your plot , for example Abs[f]!