I am trying to calculate the change of the refractive index from the change of the absorption coefficient using the Kramers-Kronig relations, in Mathematica.
c = 300000000; daF[l_] = 500 * 0.28 Exp[-((l - 500)/90)^2]; dnFpoints = Table[ { ln, c/Pi NIntegrate[ daF[li] / ((2 Pi c 10^9 /li)^2 - (2 Pi c 10^9 / ln)^2), {li, 800, 200}, Method -> {"PrincipalValue"}, Exclusions -> ((2 Pi c 10^9 /li)^2 - (2 Pi c 10^9 / ln)^2) == 0 ] }, {ln, 300, 600} ]; Unfortunately, Mathematica displays an error that it does not converge to prescribed accuracy and the output is junk (I would expect a smooth curve with a negative minimum first and then a positive maximum). I am using version 8, if it matters. Any ideas?

