You can get a fast solution, if you solve for u1 analytically with the help of GroebnerBasis and find the other ui with FindRoot to desired accuracy.
eqs = {u1 == u1^3 + u2, u2 == u1 + u2^3 + u3, u3 == u2 + u3^3 + u4, u4 == u3 + u4^3 + u5, u5 == u4 + u5^3 + u6, u6 == u5 + u6^3}; gb6 = GroebnerBasis[eqs, {u6, u5, u4, u3, u2, u1}]; s61 = Flatten[Solve[0 == gb6[[1]], u1, Reals], 1]; $MaxExtraPrecision = 500; g6rule = Transpose[{s61 // N[#, 20] &, First@FindRoot[0 == (gb6[[2]] /. #), {u2, 1}, WorkingPrecision -> 25] & /@ s61, First@FindRoot[0 == (gb6[[3]] /. #), {u3, 1}, WorkingPrecision -> 25] & /@ s61, First@FindRoot[0 == (gb6[[4]] /. #), {u4, 1}, WorkingPrecision -> 25] & /@ s61, First@FindRoot[0 == (gb6[[5]] /. #), {u5, 1}, WorkingPrecision -> 25] & /@ s61, First@FindRoot[0 == (gb6[[6]] /. #), {u6, 1}, WorkingPrecision -> 25] & /@ s61}]
Result is to long to show here. Test of accuracy:
fs = #[[1]] - #[[2]] & /@ eqs fs /. g6rule // Chop[#, 10^-18] & (* {{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}} *)
0->0? you should look atRecurrence TableorDifference equations. $\endgroup$Qmakes sense? Note that it involves the variableSubscript[u, 8], but this is not included in the variables listed inNSolve[]. $\endgroup$First[GroebnerBasis[{u1 == u1^3 + u2, u2 == u1 + u2^3 + u3, u3 == u2 + u3^3 + u4, u4 == u3 + u4^3 + u5, u5 == u4 + u5^3 + u6, u6 == u5 + u6^3}, {u6, u5, u4, u3, u2, u1}]]is a degree-729 (!) polynomial with frighteningly huge coefficients, I'm not surprised solving for solutions is difficult. $\endgroup$