$$ S=\sum_{k=0}^{10}\sin\left(\frac{(2+4k)\pi}{23}\right) =\sum_{k=0}^{10}e^\left(i\frac{(2+4k)\pi}{23}\right) =e^{i\frac{2\pi}{23}}\sum_{k=0}^{10}e^{i\frac{4k\pi}{23}} =e^{iu}\sum_{k=0}^{10}\left(e^{2iu}\right)^k $$
For example, I did this by hand, and got an answer as $\frac{1}{2} \tan\left( \frac{\pi}{23} \right)$
But how do I use Mathematica to check?
Sum[Sin[Pi/23*(2 + 4*k)], {k, 0, 10}] Sum[Sin[Pi/23*(2 + 4*k)], {k, 0, 10}] - Tan[Pi/23]/2 // Simplify I have tried some functions like Simplify,TrigFactor,TrigToExp. But I am not sure how to guide Mathematica to the final answer.
And similarly, how do I simplify
Sum[Sin[(-1)^k*Pi/23*(2 + 4*k)], {k, 0, 10}] which I got as $-\frac{1}{2} \tan\left( \frac{2\pi}{23} \right)$.
(Sum[Sin[Pi/23*(2 + 4*k)], {k, 0, 10}] - Tan[Pi/23]/2 )// FullSimplifyis for check the answer. $\endgroup$