Update: I have managed to fix the distortion of the polygons, so now only the glow is missing
Update 2: I have added a hacky "glow" to the polygons by adding partially transparent polygons slightly above the white polygons to give them some kind of "volumetric glow"
Update 3: I have tweaked the lighting settings a bit to give the image a bit more depth
Here is my attempt (code below):

(* the color function to be used by the animation *) colorfunc = Blend[{ {0, RGBColor[2/17, 8/51, 26/51]}, {0.9, RGBColor[7/51, 176/255, 188/255]}, {1, RGBColor[1, 1, 1]} }, #] &; BarLegend[{colorfunc, {0, 1}}, LegendLayout -> "Row"] (* for each polygon, generate a random function moving between 0 and 1 over the interval from 0 to 2π *) Clear@colors; colors[i_, j_] := colors[i, j] = ( SeedRandom[ToString[{i, j}]];(* make outcome predictable *) Interpolation[ReplacePart[#, {-1, 2} -> #[[1, 2]]] &@Table[{x, RandomReal[]}, {x, Subdivide[0, 2 π, 8]}], PeriodicInterpolation -> True] ) (* precompute the rotation matrices for improved performance *) rx = Evaluate@RotationMatrix[#, {1, 0, 0}] & ry = Evaluate@RotationMatrix[#, {0, 1, 0}] & rz = Evaluate@RotationMatrix[#, {0, 0, 1}] & (* {{1, 0, 0}, {0, Cos[#1], -Sin[#1]}, {0, Sin[#1], Cos[#1]}} & *) (* {{Cos[#1], 0, Sin[#1]}, {0, 1, 0}, {-Sin[#1], 0, Cos[#1]}} & *) (* {{Cos[#1], -Sin[#1], 0}, {Sin[#1], Cos[#1], 0}, {0, 0, 1}} & *) Manipulate[ With[{pt = Mod[If[#2 == m + 1, l, 0] + # - 1, n] + Mod[If[# == n + 1, k, 0] + #2 - 1, m] n + 1 &}, Graphics3D[ Dynamic@GraphicsComplex[ Catenate@Catenate@Table[(*generate the points*) rz[2 π (i + l j/m)/n].( {1, 0, 0} + rx[u].({1, 1, 1/Cos[u]} ry[2 π (j/m + (k/m (i + l j/m))/n) + t].{s r, 0, 0}) ), {s, Subdivide[1, 1.2, 6]},(*add scaled versions of the polygon for the glow effect*) {j, m}, {i, n} ], { EdgeForm@{Thick, Black}, Table[With[{i = i, j = j}, Catenate@Table[ If[s == 0 || # > 0.9, {(*if the brigthness is >0.9, enable the volumetric glow by showing the scaled polygons*) If[s > 0, Splice@{EdgeForm@None, Opacity[5 (1 - s/8) (# - 0.9)]}, {} ], Polygon[(*specify the polygons using the points above*) {pt[i, j], pt[i + 1, j], pt[i + 1, j + 1], pt[i, j + 1]} + s n m, BaseStyle -> {colorfunc[#], Glow@GrayLevel[#^10]} ] }, {}] &@colors[i, j][t], {s, 0, 6} ] ], {j, m}, {i, n} ] } ], ViewPoint -> ({0.3, 0, 1}; {0, 0, ∞}), ViewVertical -> {0, 1, 1}, Boxed -> False, SphericalRegion -> True, Background -> Darker@RGBColor[2/51, 8/51, 26/51], PlotRange -> 2, Lighting -> {{"Point", White, {-1.6, 1.6, 1}}, {"Point", White, {-1.6, 1.6, 1}}, {"Ambient", [email protected]}} ] ], {{n, 16}, 3, 20, 1},(*twist-offset along the big circle*) {{m, 6}, 3, 10, 1},(*twist-offset along the small circle*) {{k, 6}, -10, 10, 1},(*animation time*) {{l, 0}, -3, 3, 1},(*tilt of the small circles*) {{t, π/4}, 0, 2 π, AnimationRate -> 0.1, Appearance -> "Open"},(*z-rotation offset for the inner edge of the torus*) {{u, -π/4}, -π/4, π/4},(*z-rotation offset for the outer edge of the torus*) {{r, 0.4}, 0.1, 0.9},(*radius of the small circle*) ControlPlacement -> Left ]
Manipulateand adding a phase to bothSin[v]asSin[v+p]andCos[v]asCos[v+p], and varying thepfrom 0 to 2pi $\endgroup$