compressed = "1:eJzV3VFoVmUYB/\ CzTdtsrVxrLTPZVk5dM5eNESKyCwkRClMvRIYXy1RGmYRGSBci4oWIGIhIF+\ I3diESXoiIFyKyi6joIqK6iIguJKKLiOgiIoJ2nlD6juf891/f/5V/N8L6Pn+u533Oec/\ 7nvd93v7XDmzb25Jl2cEFs3+8PHnw0N6DTf/+qTm756e22T+2TRyaPPDWxJuTXbM/TL46+\ 0fJZzP5Z6/f/ew/Ks/nny1hlFv5N/ta7JVbdFweqP/3bJVovwcZZQbExUm5ScdlIv/m+\ 032yjCduyvzb9bKW9pJuUHHZW3+zU/\ 8lYH8s8cY5SOQu07KGrqld4PcdVKu0y39MYiLkzKef/YCozTl31xQnrtOyjU6Lp+\ CuDgpi/LPFjLKHpC7TspOuqU/A3FxUq7QLT2SVfcBTsrqjL1jDmbV/\ bSTsoNu6X0gd52Uy3RLfw5y10kZolu6oz6Ctkpnxo5JvgBxcVKepePSnVWP7Z2Ui3Tufgn\ i4qT0Z+wT/\ GhW3Qc4KdN0XL4GcXFSpmjljay6D3BSLtBK3Ftr5S3tpJynlaX137RVeumr8RuQu07Kioz\ tA/aD3HVSztIt/S2Ii5OyjG7p9vybq8pz10lpzdiR8HcgLk7K+\ owdk2gUFF2N8jaduxoFXQEaJe7s1P1Fo6C7lEbppq9GjYJ6Eo0yQueuRkG9vUbZTeeuRkF\ PZBpl4j4r6KlZowzTLa1R0MhGo/Rk7P1Fo6DRp0aJ2XNq/kWjoBkCjfI4HReNgmZxNMoO+\ mrUKGimTaPErB/Vq2mUOWdDG1a203HRKGjGWqMM1v+eyRX0VkGj5H+\ NG5NoFPTmR6NsoVtao6C3cxrllfusoDeoGiVWgFF9gEZBb7k1ygB9NWoUtBJBo2ymW1qjo\ NUiGuVRuqU1ClrRo1E20XHRKGjVlUZ56T4raGWcRumkW1qjoNWLGmUjHReNglaYapR490n\ dMTUKWgWsUeKJmnqC1yhopbZGWUznrkZBq+\ k1yhiduxoF7XjQKL107moUtCtFo2yg46JRboK4aJR8LxE3ytIoMctY0QdolPV0XDTKDRAX\ jbKMzl2Nsiur7gM0yjo6LholxkC18pbWKA9nbB+gUXrqf+\ sESrxdpfppjTIOWlqjLKVzV6NcA1ejRhmlc1ejxPuHVeUtrVE66NzVKFdBXDTKCB0XjXIl\ uRLzIc33T2mvv1YSKGvpuGiUWPvTl1J5iM5djXIZtLRGGabjolFiDUHF06FG6anPpeRKzP\ dUjEk0StyTqX5ao1wCLa1R2unc1SgXkytDdO5qlHjXWvEspVG66dzVKIPgatQog3RcNMo0\ aGmNkv8XbmyvUaaSKyvpuGiUC8mVLjp3Ncr55MoAHReNErOMtfKrUaNEr0b1ARol3vCjfe\ UNK/H8SfXTGqWrvh0SKJ107mqUmDddnFLpp3NXo8S1UtGraZQ2Onc1ymaQuxqll46LRjmd\ Vd8xNUrkErXaVaOcSq4so+\ OiUU4mV1rp3NUoJ5Irhd0QyZWN4GrUKIX1tMmVuENX3DE1SmFFVnLlKGhpjVJ4p59cOZJc\ KbwVSq70gpbWKIW53+TKYRAXjdJNx0WjxPtwNP/\ SsBJXIzW21yiRWbXyltYohTFCcqW1PrMSKIvo3NUo+0HuapROOi4aZRTkrkbJ/\ 9o89s41rOwDcdEo8QRPje01yu7kSuHqSK601LdDAqWDzl2NEndM9KTasFL4PZMr7fW/\ dQKl8FlypRvERaNEP02N7TVK4ZsJlEV0XDRKF4iLRmmmc1ejFH7rBEorHReNEmN71Ac0rM\ T9hZ9naFgZS67E1UH10xol5uTQmESjULmrUUbnikvDSguduxqlkFkJlCY6dzVK91wtrVH4\ frphZWCurJufMpnlX//q3q/PdYvLu6F//jL99cbvzg0rHU2KnmJOhXrKmfP/yETh6y+\ 0g7g4KXytmePgmnVSnsjm1d/UylvaSdlDX42Ft+a2yiidu60gd52U/\ XRcjoHcdVL4qogLQVyclGX01RizQqvKc9dJ4WtxtoC4OCmH6ZY+\ CnLXSXmPVppAXJyUMbql2+qz3Fbpo6/G2FtV81firkE9Sx0BueukHKNz96+\ sOnedlOO0ElleMSZxUmIlEzV79SeIi5Nygo5LvgSgak2skxIVjqg75h8gLk4KX2O9sGLVV\ jlFt/TvIC5OymlaiWeUij7ASVmesf107PWtlbe0k8KfvhBVaSr6ACcl1sBT95ffQO46KQN\ 0Sx8Gueuk8KeY/Ari4qTE+5pmRinsN7BVztFx+QXExUn5gFbeBbnrpMS+Oer+\ 8jOIi5PCn0EVc08VfYCTEjt4qTtm1J6o+Sv8yWfvgNx1UrbQufsTyF0nhT9vr7BbzFbJf+\ BGWT+CuDgpU3RcYgVpRU0VJ2Urnbs/gLg4KdN0XKLaYEUf4KTEGgKqD7gN4uKkxFtnqp+\ Od4qoHrOJsp3O3Vg/0Vfe0k4Kf45yYa+vrcKfdf09yF0n5RIdlwMgd50U/oR1dIamk/\ IhHRd0hqaTMkTnLjpx0km5TMcFnTjppMTJZw2fW+\ mkxJ19AaOgEyedlNV07qITJ52UK3TuohMnnZSddO6i8xmdlKt0XND5jE5KPMVSY3t0PqOT\ co2OCzqf0UkZp3MXnc/opFyn44JOM3RS1mRsH4BOM3RS4t0nNbZHpxk6Kbvo3EWnGTopN+\ jcLVR3slWG6dxFZ/\ 85KTfpuOwGLe2kxM50amyPzv5zUm7RcUEn5TkpM3eVfE9PQQHmhjur4rntnne/\ XvIZf8TSGPgfcVI20k1zHlw+TkosiaEG4+tASzspW+d3+\ VRMmDgpQ3Tuvgji4qSM03GJRSkVQ1cnZZiOyyiIi5OyllZiKVTFIMJJ4Tf2joC4OClPZuw\ DaizAq+gDnBR+q3Isiq6Vt7STspSOS+\ GoCFslXm9Rj9zDIHedlKfouJwDueukrKNz9zkQFyeF304ez5Ft5bnrpPDbyYckm9LTK7F4\ m+rVzoLcdVL4DfKDki3/6ZUNdEsXDvqxVXrpqzGyvOavxOZWaiR8BuSuk8IXMRiQlGVIr/\ TRLR3b4irGJE7K0Yy9vzwD4uKk8GUZokevGNs7KXxZhn4QFyeln87dwjFttgpfaKIXxMVJ\ iblm6o4ZG8/\ RjLWJwpfOiNFLrbylnZSn6dzdlFX3AU4KXwxkKchdJ4UvBnIK5K6TcpKOyxIQFyeFL29SO\ GTTVuHLm/SAuDgpm+jcPQly10nhC7Z0g7g4Kcsztg+IO1FFH+Ck8AVbYla6z1/\ hC7Z0gpZ2Us7QuVs4UNhW4UvQPALi4qTwJWjiybhiJOykxCx/M6OgYvJOCl+\ CBpVed1JW0LmLSq87KXxRHVR63Unhi+r01/97tgpfVOcYaGknhS+\ qgwqVOyl8UR1UqNxJ4YvqHAUt7aTwRXVQWW8nJf+BG9u31We5rTJFxwUVwXZS+\ KI6qAi2kzJNxwUVwXZS+KI6qGS0kxLPE1Q/\ jUpGOyl8UR1UMtpJ4YvqoALLTgpfVAcVWHZS+KI6qByxk8IX1UHliJ0UvqhOS/2/\ Z6vwRXVQ8V4nhS+qg4r3Oil8UR1U6tZJ4YvqoFK3TgpfVAcVhnVS+\ KI6qDCsk8IX1UFlVJ0UvqgOKqPqpPBFdW7/TxS+\ qA4qOuqk8EV1UIlOJ4UvqoNKdDopfFEdVNDSSeGL6qCClk4KX1QHFbR0UviiOqigpZPCF9\ VB5R+dFL6oDir/6KTwRXXibW7FmMRJ4YvqoPKPTsrMHeVvgxXDlA==";
Uncompress to get the three lists:
{vsoundAll, decAll, pdivAll} = Uncompress[compressed];
Replicate the issue:
ListLinePlot[{vsoundAll, decAll, pdivAll}, Frame -> True, Joined -> True, PlotRange -> {{0.01, .4}, {0, 2}}, PlotStyle -> {"DarkColor", "Spahire", Red}, Filling -> {1 -> Top, 3 -> Top, 2 -> {3}}]

Several ways to fix:
1. Combine the second and third lists as Join[decAll, Reverse@pdivAll] and use it as the fourth input list and add 4 -> Bottom to the Filling option setting:
ListLinePlot[{vsoundAll, decAll, pdivAll, Join[decAll, Reverse@pdivAll]}, Frame -> True, Joined -> True, PlotRange -> {{0.01, .4}, {0, 2}}, PlotStyle -> {"DarkColor", "Spahire", Red, LineOpacity -> 0}, Filling -> {1 -> Top, 3 -> Top, 4 -> {Bottom, LightGreen}}]

2. Construct a FilledCurve or Polygon using decAll and Reverse @ pdivAll:
ListLinePlot[{vsoundAll, decAll, pdivAll}, Frame -> True, Joined -> True, PlotRange -> {{0.01, .4}, {0, 2}}, PlotStyle -> {"DarkColor", "Spahire", Red}, Filling -> {1 -> Top, 3 -> Top, 2 -> {3}}, Epilog -> {LightOrange, FilledCurve[Line /@ {decAll, Reverse@pdivAll}]}]

Using
Epilog -> {LightOrange, Polygon[Join[decAll, Reverse@pdivAll]]}
gives the same picture.
3. An alternative approach is to create BSplineFunctions from decAll and pdivAll and plot them using ParametricPlot:
Show[ListLinePlot[{vsoundAll, decAll, pdivAll}, Frame -> True, PlotRange -> {{0.01, .4}, {0, 2}}, PlotStyle -> {"DarkColor", "Spahire", Red}, Filling -> {1 -> Top, 3 -> Top, 3 -> {2}}], ParametricPlot[v BSplineFunction[decAll][t] + (1 - v) BSplineFunction[pdivAll][t], {t, 0, 1}, {v, 0, 1}, AspectRatio -> 1/GoldenRatio, PlotStyle -> Green, BoundaryStyle -> None]]

{vsoundAll, decAll, pdivAll}are probably irrelevant here, from a problem-solving-strategy point of view, such assumptions are sometimes the reason problems don't get solved. For instance, this works for me:ListLinePlot[Table[Log[x] + k, {k, 3}, {x, 10}], Frame -> True, PlotRange -> {{1, 10}, {0, 6}}, PlotStyle -> {"DarkColor", "Saphire", Red}, Filling -> {1 -> Top, 3 -> Top, 2 -> {3}}]$\endgroup$