The problem
I would like to compute the Lorentz transformation $\mathbf{p}'$ of an arbitrary 3-momentum vector $\mathbf{p}$ given a boost characterized by some other momentum vector $\mathbf{p}_{N}$, and then calculate polar and azimuthal angles $\theta',\phi'$. The procedure is given below: $$ \mathbf{p}' = \mathbf{p} + \gamma_{N}\mathbf{v}_{N}E + \Gamma \mathbf{v}_{N}(\mathbf{v}_{N}\cdot \mathbf{p}) $$ Here, $$ \quad |\mathbf{p}| = \sqrt{E^{2}-m^{2}}, \quad |\mathbf{p}_{N}| = \sqrt{E_{N}^{2}-m_{N}^{2}},\quad \mathbf{v}_{N} = \frac{\mathbf{p}_{N}}{E_{N}}, \quad \gamma_{N} = \frac{E_{N}}{m_{N}}, \quad \Gamma = \frac{\gamma_{N}-1}{v_{N}^{2}} $$ where in spherical coordinates $$ \mathbf{p} = |\mathbf{p}|(s(\theta)c(\phi),s(\theta)s(\phi),c(\theta)), \quad \mathbf{p}_{N} = |\mathbf{p}_{N}|(s(\theta_{N})c(\phi_{N}),s(\theta_{N})s(\phi_{N}),c(\theta_{N})) $$ Finally, $$ \theta' = \arccos\left( \frac{p'_{z}}{|\mathbf{p}'|}\right), \quad \phi' = \begin{cases}\arccos\left(\frac{p_{x}'}{\sqrt{p_{x}^{'2}+p_{y}^{'2}}} \right), \quad p_{y}' > 0, \\ -\arccos\left(\frac{p_{x}'}{\sqrt{p_{x}^{'2}+p_{y}^{'2}}} \right),\quad p_{y}' < 0 \end{cases} $$
The initial parameters here are $$ \theta_{N},\phi_{N},E_{N},m_{N},m,E,\theta,\phi $$
The output must be
$$ \mathbf{p}',\quad \theta', \quad \phi\ $$
My attempt to resolve.
I have written a piece of code that computes all these parameters. Please find it below:
(*Position of the point in coordinate space in terms of spherical \ coordinates*) θVal[x_, y_, z_] = ArcCos[z/Sqrt[x^2 + y^2 + z^2]]; ϕVal[x_, y_] = If[y > 0, ArcCos[x/Sqrt[x^2 + y^2]], -ArcCos[x/Sqrt[x^2 + y^2]]]; (*N momentum, velocity and γ,Γ factors at its \ lab frame*) pNvec[EN_, mN_, θN_, ϕN_] = Sqrt[EN^2 - mN^2] {Sin[θN] Cos[ϕN], Sin[θN] Sin[ϕN], Cos[θN]}; vvec[EN_, mN_, θN_, ϕN_] = +( pNvec[EN, mN, θN, ϕN]/EN); γFactor[EN_, mN_] = EN/mN; Γfactor[EN_, mN_] = Simplify[(γFactor[EN, mN] - 1)/((v /. Solve[γFactor[EN, mN] == 1/Sqrt[1 - v^2], v])^2)[[1]]]; (*Momentum of X at the rest frame of N*) pproductRestVec[EXrest_, mX_, θXrest_, ϕXrest_] = Sqrt[EXrest^2 - mX^2] {Sin[θXrest] Cos[ϕXrest], Sin[θXrest] Sin[ϕXrest], Cos[θXrest]}; (*Decay product's momentum and energy at N's lab frame*) pproductLabVec[EN_, mN_, θN_, ϕN_, EXrest_, mX_, θXrest_, ϕXrest_] = Simplify[pproductRestVec[EXrest, mX, θXrest, ϕXrest] + γFactor[EN, mN]* vvec[EN, mN, θN, ϕN]* EXrest + Γfactor[EN, mN]* vvec[EN, mN, θN, ϕN] (vvec[EN, mN, θN, ϕN].pproductRestVec[EXrest, mX, θXrest, ϕXrest])]; EproductLabVec[EN_, mN_, θN_, ϕN_, EXrest_, mX_, θXrest_, ϕXrest_] = Simplify[γFactor[EN, mN] (EXrest + vvec[EN, mN, θN, ϕN].pproductRestVec[EXrest, mX, θXrest, ϕXrest])]; (*X product's θ and ϕ at lab frame*) pproductLabVec3[EN_, mN_, θN_, ϕN_, EXrest_, mX_, θXrest_, ϕXrest_] = pproductLabVec[EN, mN, θN, ϕN, EXrest, mX, θXrest, ϕXrest][[3]]; pproductLabVec2[EN_, mN_, θN_, ϕN_, EXrest_, mX_, θXrest_, ϕXrest_] = pproductLabVec[EN, mN, θN, ϕN, EXrest, mX, θXrest, ϕXrest][[2]]; pproductLabVec1[EN_, mN_, θN_, ϕN_, EXrest_, mX_, θXrest_, ϕXrest_] = pproductLabVec[EN, mN, θN, ϕN, EXrest, mX, θXrest, ϕXrest][[1]]; θproductLabVec = Compile[{{EN, _Real}, {mN, _Real}, {θN, _Real}, {ϕN, \ _Real}, {EXrest, _Real}, {mX, _Real}, {θXrest, _Real}, \ {ϕXrest, _Real}}, ArcCos[pproductLabVec3[EN, mN, θN, ϕN, EXrest, mX, θXrest, ϕXrest]/((*Norm[pproductLabVec[EN, mN,θN,ϕN,EXrest, mX,θXrest,ϕXrest]]*)√(pproductLabVec1[EN, mN, θN, ϕN, EXrest, mX, θXrest, ϕXrest]^2 + pproductLabVec2[EN, mN, θN, ϕN, EXrest, mX, θXrest, ϕXrest]^2 + pproductLabVec3[EN, mN, θN, ϕN, EXrest, mX, θXrest, ϕXrest]^2))]] ϕproductLabVec = Compile[{{EN, _Real}, {mN, _Real}, {θN, _Real}, {ϕN, \ _Real}, {EXrest, _Real}, {mX, _Real}, {θXrest, _Real}, \ {ϕXrest, _Real}}, ϕVal[ pproductLabVec1[EN, mN, θN, ϕN, EXrest, mX, θXrest, ϕXrest], pproductLabVec2[EN, mN, θN, ϕN, EXrest, mX, θXrest, ϕXrest]]] Question
However, it turns out that it works quite slow:
ENvalue = 20; mNvalue = 1.5; θNvalue = 0.03; ϕNvalue = Pi/3; EXrestValue = mNvalue/2; mXvalue = 0.01; θXrestValue = Pi/8; ϕXrestValue = 0.1; AbsoluteTiming[ϕproductLabVec[ENvalue, mNvalue, θNvalue, ϕNvalue, EXrestValue, mXvalue, θXrestValue, ϕXrestValue]]*10^6 AbsoluteTiming[θproductLabVec[ENvalue, mNvalue, θNvalue, ϕNvalue, EXrestValue, mXvalue, θXrestValue, ϕXrestValue]]*10^6 AbsoluteTiming[ pproductLabVec[ENvalue, mNvalue, θNvalue, ϕNvalue, EXrestValue, mXvalue, θXrestValue, ϕXrestValue]]*10^6 {75.1, 736183.}
{74.7, 39506.9}
{265.5, {564138., 511174., 1.92596*10^7}}
In situations when there are a lot of points (say, $10^7$), it is very crucial. Could you please point out what parts of the code may be improved in order to speed up it?
ArcTan[px, py], which accounts also for the $p'_x=0$ case. $\endgroup$