hope you're having a nice day!
Context: I'm trying to constrain parameters from a model of Orbital Resonance equilibrium. In short, I know a parameter "$\Delta_{eq}$" which is derived from observations. I know a set of parameters {$m_1$,$m_2$,$M_*$,$q$,$f_1$,$f_{2p}$} and I know (not precisely yet) physical boundaries for variables $\alpha$, $hr_1$, $hr_2$, $\Sigma_1$, $\Sigma_2$, given $\Delta_{eq}$. Explicitly
$$\Delta_{eq}=\sqrt{2} \sqrt{\frac{m_1 m_2 \left(\alpha m_2 (q+1)+m_1 q\right) \left(\text{hr}_1^4 q^2 \Sigma _2 f_{2 p}^2+\alpha ^{3/2} f_1^2 \text{hr}_2^4 (q+1)^2 \Sigma _1\right)}{\text{hr}_1^2 \text{hr}_2^2 M_*^2 q^2 (q+1)^2 \left(\text{hr}_1^2 m_2 \Sigma _2-\sqrt{\alpha } \text{hr}_2^2 m_1 \Sigma _1\right)}}$$
My try: Evaluating known values (observables) I can explore the parameters I'm interested in, first plotting the real part of
$$0.000492702 \sqrt{\frac{(0.000704487 \alpha +0.000933589) \left(5.6644 \alpha ^{3/2} \text{hr}_2^4 \Sigma _1+2.84934 \text{hr}_1^4 \Sigma _2\right)}{\text{hr}_1^2 \text{hr}_2^2 \left(0.000352244 \text{hr}_1^2 \Sigma _2-0.000933589 \sqrt{\alpha } \text{hr}_2^2 \Sigma _1\right)}}$$
and Manipulating
Manipulate[Plot[Re[0.0004927023775077934* Sqrt[((0.0009335890199999999 + 0.00070448742*\[Alpha])* (5.6644*\[Alpha]^(3/2)*Subscript[hr, 2]^4*Subscript[\[CapitalSigma], 1] + 2.849344*Subscript[hr, 1]^4*Subscript[\[CapitalSigma], 2]))/ (Subscript[hr, 1]^2*Subscript[hr, 2]^2*(-0.0009335890199999999*Sqrt[\[Alpha]]* Subscript[hr, 2]^2*Subscript[\[CapitalSigma], 1] + 0.00035224371*Subscript[hr, 1]^2* Subscript[\[CapitalSigma], 2]))]], {\[Alpha], 0, 0.5}, PlotRange -> All], {Subscript[hr, 1], 0.01, 0.05}, {Subscript[hr, 2], 0.01, 0.05}, {Subscript[\[CapitalSigma], 1], 10^(-6), 10^(-3)}, {Subscript[\[CapitalSigma], 2], 10^(-6), 10^(-3)}]
What, at the time of this post, I've not been able to study is the constrained space of parameters that satisfy $\Delta_{eq} \approx 0.035$, of my particular interest. That is to say, solving:
sol1 = Reduce[ Re[0.0004927023775077934*Sqrt[((0.00070448742*\[Alpha] + 0.0009335890199999999)* (5.6644*\[Alpha]^(3/2)*Subscript[hr, 2]^4*Subscript[\[CapitalSigma], 1] + 2.849344*Subscript[hr, 1]^4*Subscript[\[CapitalSigma], 2]))/(Subscript[hr, 1]^2* Subscript[hr, 2]^2*(0.00035224371*Subscript[hr, 1]^2* Subscript[\[CapitalSigma], 2] - 0.0009335890199999999*Sqrt[\[Alpha]]*Subscript[hr, 2]^2* Subscript[\[CapitalSigma], 1]))]] == 0.035 && 1/10^6 < Subscript[\[CapitalSigma], 2] < Subscript[\[CapitalSigma], 1] < 1/10^3 && 0 < \[Alpha] < 1 && 0.009 < Subscript[hr, 1] < 0.1 && 0.009 < Subscript[hr, 2] < 0.1, {\[Alpha], Subscript[\[CapitalSigma], 1], Subscript[\[CapitalSigma], 2], Subscript[hr, 1], Subscript[hr, 2]}, Reals]
Question 1: What can I do to efficently solve the problem? I've also tried with NSolve and constraining only $\Sigma$s.
Question 2: solving only for $\Sigma$s I've found that the solution is $\{\}$ empty for guessed $hr$s so, in the case that there's no solution for $\Delta_{eq}=0.035$, how can I find the minimum $\Delta_{eq}$? Also, is there any way to solve for $\Delta_{eq} \pm \delta\Delta$ given $\delta\{m_1,...,f_{2p}\}$ uncertainties?
Disclaimer: Tried to copy the code as Raw Input following this question but couldn't do better. I apologize if the code is hard to read.
And by the way, I appreciate any suggestion/alternative regarding on the problem

