Consider the following function:
function[mN_,x_,b_]=-((1/(48*Pi^2*mN^3))*(8*b*mN^6*x^4 - 20*b*mN^6*x^2 + 6*mN^6*x^6*Log[b*mN + mN] - 3*mN^6*x^4*Log[b*mN + mN] + 21*mN^6*x^2*Log[b*mN + mN] - 6*mN^6*x^6*Log[mN^3*x^2*(b*mN - 3*mN) + mN^3*(mN - b*mN)] + 3*mN^6*x^4*Log[mN^3*x^2*(b*mN - 3*mN) + mN^3*(mN - b*mN)] + 3*mN^6*x^2*Log[mN^3*x^2*(b*mN - 3*mN) + mN^3*(mN - b*mN)] + 6*mN^6*x^6*Log[mN^3*(b*mN + mN) - mN^3*x^2*(b*mN + 3*mN)] - 3*mN^6*x^4*Log[mN^3*(b*mN + mN) - mN^3*x^2*(b*mN + 3*mN)] - 3*mN^6*x^2*Log[mN^3*(b*mN + mN) - mN^3*x^2*(b*mN + 3*mN)] - 3*(2*mN^6*x^6 - mN^6*x^4 + 7*mN^6*x^2)*Log[mN - b*mN] + 8*(2*mN^6*x^6 - 3*mN^6*x^4 + 3*mN^6*x^2 + mN^6)* Log[(2*mN*x)/(b*mN + mN)] + 12*b*mN^6)); It contains terms like gLog[f1], gLog[f2], where f1,f2 are some functions; so it may be simplified to gLog[f1f2]. However, commands like Simplify do not work:
Assuming[0<b<1&& mN > 0&& 0<x<1/2,Simplify[function[mN,x,b]]] -(1/(48 [Pi]^2))mN^3 (6 x^6 log(mN^4 (-(b+3) x^2+b+1))-6 x^6 log(mN^4 (b (x^2-1)-3 x^2+1))-3 x^4 log(mN^4 (-(b+3) x^2+b+1))+3 x^4 log(mN^4 (b (x^2-1)-3 x^2+1))-3 x^2 log(mN^4 (-(b+3) x^2+b+1))+3 x^2 log(mN^4 (b (x^2-1)-3 x^2+1))+3 (2 x^4-x^2+7) x^2 log((b+1) mN)-3 (2 x^4-x^2+7) x^2 log(mN-b mN)+8 b x^4-20 b x^2+16 x^6 log((2 x)/(b+1))-24 x^4 log((2 x)/(b+1))+24 x^2 log((2 x)/(b+1))+8 log((2 x)/(b+1))+12 b)
Could you please tell me the rule allowing to reduce the expression?
Update: Thanks to @DanielHuber and @UlrichNeumann. The solution is to combine FullSimplify with the assumptions on parameters b,mN,x:
Assuming[0<b<1&& mN > 0&& 0<x<1/2,FullSimplify[function[mN,x,b]]]


