I have a plot for which I would like to create an legend that is black and white printer friendly. I have seen Jen's legendmaker but I don't know how to adapt it. I need help in making the legend for the exit region to appear meshed. The graph is incomplete right now and I will add more stuff to it.. like J and V etc etc but for now I want the exit regions and their legends to be black and white printer friendly. What can I do to get a mesh to appear in the legend for the exit region. Thanks
EDIT: Gaps in code fixed.

I1 = 15; I2 = 8; f1[x_] := I1; f2[x_] := I2; hddd = 20; h00d = 60; h00s = 150; hsss = 180; pl1 = Plot[{f1[x]}, {x, 0, 200}, AxesOrigin -> {0, 0}, PlotRange -> {-1, 20}, Epilog -> { Inset[ Grid[{{Text[Style["J", "Garamond", 16]], Text[Style["First Function", "Garamond", 16]]}, {Text[ Style["V", "Garamond", 16]], Text[Style["Second Function", "Garamond", 16]]}}], {h00s, I1 + 3}], Inset[ Grid[{{Item["", Background -> RGBColor[0.35082, 0.595178, .853742], Frame -> True, FrameStyle -> AbsoluteThickness[1]], Style["Continuation Region", "Garamond", 16]}, {Item["", Background -> RGBColor[1, 1, .4], Frame -> True, FrameStyle -> AbsoluteThickness[1]], Style["Exit Region", "Garamond", 16]}}]], Dashed, Arrowheads[Small], Arrow[{{h00s, I1}, {h00s, 0}}], Arrowheads[Small], Arrow[{{h00d, I1}, {h00d, 0}}], Arrowheads[Small], Arrow[{{hddd, I1}, {hddd, 0}}], Arrowheads[Small], Arrow[{{hsss, I2}, {hsss, 0}}], Inset[Style["Down Boundaries", "Garamond", 16], {(hddd + h00d)/2, (I1 + I2)/2}], Inset[ Style["Top Boundaries", "Garamond", 16], {(hsss + h00s)/2, (I1 + I2)/2}], }, Ticks -> {{{hddd, Text[Style["HDD", "Garamond", 20]]}, {h00d, Text[Style["H0D", "Garamond", 20]]}, {h00s, Text[Style["H0S", "Garamond", 20]]}, {hsss, Text[Style["HSS", "Garamond", 20]]}}, {{I1, Text[Style["High", "Garamond", 20]]}, {I2, Text[Style["Low", "Garamond", 20]]}}}, AxesLabel -> {Text[Style["Variable X", "Garamond", 20]], Text[Style["Variable Y", "Garamond", 20]]}]; pl2 = Plot[{f2[x]}, {x, 0, 200}, AxesOrigin -> {0, 0}, PlotRange -> {-1, 20}]; ptd = ListPlot[{{h00d, I2}, {hddd, I1}}, PlotStyle -> {Directive[Red, PointSize[Large]]}, AxesOrigin -> {0, 0}, PlotRange -> {-1, 20}]; pts = ListPlot[{{h00s, I1}, {hsss, I2}}, PlotStyle -> {Directive[Green, PointSize[Large]]}, AxesOrigin -> {0, 0}, PlotRange -> {-1, 20}]; r1 = RegionPlot[ f1[x] > 0, {x, 0, hddd - 1}, {y, I1 - 0.15, I1 + 0.15}, PlotStyle -> RGBColor[1, 1, .4], Mesh -> 2]; r2 = RegionPlot[ f1[x] > 0, {x, h00s + 1, 200}, {y, I1 - 0.15, I1 + 0.15}, PlotStyle -> RGBColor[1, 1, .4], Mesh -> 2]; r3 = RegionPlot[ f1[x] > 0, {x, 0, h00d - 1}, {y, I2 - 0.15, I2 + 0.15}, PlotStyle -> RGBColor[1, 1, .4], Mesh -> 2]; r4 = RegionPlot[ f1[x] > 0, {x, hsss + 1, 200}, {y, I2 - 0.15, I2 + 0.15}, PlotStyle -> RGBColor[1, 1, .4], Mesh -> 2]; r5 = RegionPlot[ f1[x] > 0, {x, h00d + 1, hsss - 1}, {y, I2 - 0.1, I2 + 0.1}, PlotStyle -> RGBColor[0.35082, 0.595178, .853742]]; r6 = RegionPlot[ f1[x] > 0, {x, hddd + 1, h00s - 1}, {y, I1 - 0.1, I1 + 0.1}, PlotStyle -> RGBColor[0.35082, 0.595178, .853742]]; Show[pl1, pl2, ptd, pts, r1, r2, r3, r4, r5, r6] 

