How can I compute this triple integral?
$$I=\underset{V}{\iiint}\frac{(y-1)^3}{x^2+y^2+z^2+1}\,\mathrm dx\,\mathrm dy\,\mathrm dz\qquad V\begin{cases}x^2+y^2+z^2\le 4\\x\ge 0\end{cases}$$
I tried this but it has been running for a long time and not return result yet.
Integrate[ Boole[0 <= x^2 + y^2 + z^2 <= 4]*((y - 1)^3/(x^2 + y^2 + z^2 + 1)), {x, 0, 2}, {y, -2, 2}, {z, -2, 2}]
NIntegratewill give a numerical value (-16.755...) $\endgroup$