4
$\begingroup$

I know that $\sqrt[3]{2744} = 2 + 7 + 4 + 4 - 3$, $\sqrt[3]{3375} = 3 + 3 + 7 + 5 - 3$, and $\sqrt[3]{4096} = 4 + 0 + 9 + 6 - 3$ by

 Solve[{a + b + c + d + e - 3 == CubeRoot[10000 a + 1000 b + 100 c + 10 d + e], 1 <= a <= 9, 0 <= b <= 9, 0 <= c <= 9, 0 <= d <= 9, 0 <= e <= 9}, {a, b, c, d, e}, Integers] 

I am trying to solve

Solve[{a + b + c + d + e - 3 == CubeRoot[10000 a + 1000 b + 100 c + 10 d + e], 1 <= a <= 9, 0 <= b <= 9, 0 <= c <= 9, 0 <= d <= 9, 0 <= e <= 9}, {a, b, c, d, e}, Integers] 

But the time run too long and I can not get the result. How can I reduce the time to solve this equation?

$\endgroup$

3 Answers 3

6
$\begingroup$

Try

x=10^4; While[(Total[IntegerDigits[x]]-3)^3!=x&&x<10^5,x++]; If[x==10^5,"No solution",x] 

which finishes in a second and displays No solution

But there is a solution for (Total[IntegerDigits[x]]+3)^3

$\endgroup$
1
  • $\begingroup$ If you start with x=1 your code finds the solution 125, But your code has to be restarted with last x-value to find all solution. $\endgroup$ Commented Sep 2, 2022 at 8:00
7
$\begingroup$

The fastest way: Use Table!

Flatten[Table[ If[(a + b + c + d + e - 3)^3 == 10000 a + 1000 b + 100 c + 10 d + e, {a, b, c, d, e}, Nothing], {a, 0, 9}, {b, 0, 9}, {c, 0, 9}, {d, 0, 9}, {e, 0, 9}] , 5 - 1 ] // AbsoluteTiming (*{0.34782, {{0, 0, 1, 2, 5}, {0, 0, 2, 1, 6}, {0, 0, 3, 4, 3}, {0,2, 7, 4, 4}, {0, 3, 3, 7, 5}, {0, 4, 0, 9, 6}}}*) 

Adapting @Bill's interesting answer we get the short problemdescription

Table[If[(Total[IntegerDigits[x]] - 3)^3 == x, x,Nothing], {x, 10^5}] (*{125, 216, 343, 2744, 3375, 4096}*) 
$\endgroup$
6
$\begingroup$
Reduce[{(a + b + c + d + e - 3)^3 == a*10^4 + b*10^3 + c*10^2 + d*10 + e, 0 <= {a, b, c, d, e} <= 9}, {a, b, c, d, e}, Integers] 
(a == 0 && b == 0 && c == 1 && d == 2 && e == 5) || (a == 0 && b == 0 && c == 2 && d == 1 && e == 6) || (a == 0 && b == 0 && c == 3 && d == 4 && e == 3) || (a == 0 && b == 2 && c == 7 && d == 4 && e == 4) || (a == 0 && b == 3 && c == 3 && d == 7 && e == 5) || (a == 0 && b == 4 && c == 0 && d == 9 && e == 6) 

It means that there no solution for a!=0. The same as

Solve[{(a + b + c + d + e - 3)^3 == a*10^4 + b*10^3 + c*10^2 + d*10 + e, 0 <= {a, b, c, d, e} <= 9}, {a, b, c, d, e}, Integers] 

and

Reduce[{(a + b + c + d + e - 3)^3 == a*10^4 + b*10^3 + c*10^2 + d*10 + e, 0 <= {a, b, c, d, e} <= 9, a != 0}, {a, b, c, d, e}, Integers] 

False

and there three solutions for the first case.

Solve[{(a + b + c + d - 3)^3 == a*10^3 + b*10^2 + c*10 + d, 0 <= {a, b, c, d} <= 9, a != 0}, {a, b, c, d}, Integers] 

{{a -> 2, b -> 7, c -> 4, d -> 4}, {a -> 3, b -> 3, c -> 7, d -> 5}, {a -> 4, b -> 0, c -> 9, d -> 6}}

$\endgroup$

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.