β = {0.01, 0.1, 1, 10, 100} eqns = Subscript[α, n]*BesselJ[1, Subscript[α, n]] == #* BesselJ[0, Subscript[α, n]] & /@ β roots = FindRoot[#, {Subscript[α, n], 1}] & /@ eqns
$$\left\{\left\{\alpha _n\to 0.141245\right\},\left\{\alpha _n\to 0.441682\right\},\left\{\alpha _n\to 1.25578\right\},\left\{\alpha _n\to 2.1795\right\},\left\{\alpha _n\to 2.3809\right\}\right\}$$
K0 = Subscript[α, n]^2 /. roots
{0.0199501, 0.195083, 1.57699, 4.75021, 5.66869}
ListPlot[Transpose[{K0, β}] , Joined -> True , PlotStyle -> Red , MeshStyle -> Blue , Mesh -> All , ScalingFunctions -> {None, "Log"} , AxesLabel -> {"K0", "β"} , Ticks -> {Range[1, 6, 1], PowerRange[0.01, 100]} , GridLines -> {Range[1, 6, 1], PowerRange[0.01, 100]} , GridLinesStyle -> {{Gray, Dotted}, {Gray, Dotted}} ]

EDIT1-To flip axes
ListPlot[Transpose[{β, K0}] , Joined -> True , PlotStyle -> Red , MeshStyle -> Blue , Mesh -> All , ScalingFunctions -> {"Log", None} , AxesLabel -> {"β", "K0"} , Ticks -> {PowerRange[0.01, 100], Range[1, 6, 1]} , GridLines -> {PowerRange[0.01, 100], Range[1, 6, 1]} , GridLinesStyle -> {{Gray, Dotted}, {Gray, Dotted}} , PlotRange -> {{0.01, 110}, {-0.5, 6}} ]

EDIT2-To draw a smooth curve
Using InterpolationOrder:
p1 = ListPlot[Transpose[{β, K0}] , Joined -> True , PlotStyle -> Directive[Dotted, Black] , ScalingFunctions -> {"Log", None} , AxesLabel -> {"β", "K0"} , Ticks -> {PowerRange[0.01, 100], Range[1, 6, 1]} , GridLines -> {PowerRange[0.01, 100], Range[1, 6, 1]} , GridLinesStyle -> {{Gray, Dotted}, {Gray, Dotted}} , PlotRange -> {{0.01, 110}, {-0.5, 6}} , InterpolationOrder -> 1 , Epilog -> { Black, AbsolutePointSize[6], Point@Transpose[{Log@β, K0}] } ]; p2 = ListPlot[Transpose[{β, K0}] , Joined -> True , PlotStyle -> Directive[Thin, Blue] , ScalingFunctions -> {"Log", None} , AxesLabel -> {"β", "K0"} , Ticks -> {PowerRange[0.01, 100], Range[1, 6, 1]} , GridLines -> {PowerRange[0.01, 100], Range[1, 6, 1]} , GridLinesStyle -> {{Gray, Dotted}, {Gray, Dotted}} , PlotRange -> {{0.01, 110}, {-0.5, 6}} , InterpolationOrder -> 2 ]; Show[p1, p2]
