Ok, mea culpa, I got it wrong.
Try 2:
n = 9; domain = Chop[N[Range[2^(-n), 0.9999999999, 2^(-n)]]]; data = Transpose[{domain, InverseCDF[NormalDistribution[0, 1], domain]}]; indices = (ToString[PaddedForm[#1, 2, NumberPadding -> {"0", "0"}]] & ) /@ Range[0, n]; symbols = (Symbol[StringJoin["x", #1]] & ) /@ indices; expr = symbols . (ChebyshevT[#1, x] & ) /@ Range[0, Length[indices] - 1]; result = FindFit[data, expr, symbols, x]; function = Function[x, Evaluate[FullSimplify[expr /. result]]]
Function[x, -2.694070753447704 + x*(36.02463367942255 + x*(-414.4544969663766 + x*(2919.8339303927346 + x*(-12190.359149188691 + x*(31174.896173249082 + x*(-49278.882209269956 + x*(46908.437339362164 + x*(-24621.56753111048 + 5471.459451358962*x))))))))]
Plot[function[y] - InverseCDF[NormalDistribution[0, 1], y], {y, 0, 1}, PlotRange -> {{0, 1}, {-12^(-1), 1/12}}]
Function[x, -3.1981139183044434 + x*(141.82176399230957 + x*(-7424.74800491333 + x*(236253.08526611328 + x*(-4.680630958251953*^6 + x*(6.148906216479492*^7 + x*(-5.613556024174805*^8 + x*(3.674661709173828*^9 + x*(-1.7557128799768555*^10 + x*(6.145958481669141*^10 + x*(-1.5509398689283594*^11 + x*(2.657566083774026*^11 + x*(-2.4466979730388477*^11 + x*(-9.471151854829346*^10 + x*(6.752732365297246*^11 + x*(-9.872581110395927*^11 + x*(5.544094557729795*^11 + x*(3.4958797462575586*^11 + x*(-8.717278427261528*^11 + x*(6.23268006496337*^11 + x*(-8.207324068464363*^10 + x*(-1.7954943836313046*^11 + x*(1.3475389531949298*^11 + x*(-3.772789388590992*^10 + x*(1.9975620443267794*^9 + 6.922907598366096*^8*x))))))))))))))))))))))))]
The maximum deviation generally stays below $0.05$ until close to the exterme values. The definition of extreme values changes by changes of $n$ values. Try values of $n$ until a satisfactory result is found.
Of course, I still may have missed something.
FullSimplifyon the result to obtain-Sqrt[-2 Log[y] - Log[-2 π Log[2 π y^2]]] + ...$\endgroup$FullSimplify[Series[f[y], {y, 0, 1}]] /. Log[_ Log[_]] :> 0. But since you mention that you also want to get higher-order terms: I am afraid this is not directly possible in Mathematica. You can see that the expansion is the same, no matter how many terms you specify inSeries. That is because Mathematica uses its tabulated series forInverseErfcat $x\to0$, which is a fixed expression. $\endgroup$Series[]expansion ofInverseErf[x]around x=1?, and the corresponding answer by @user293787. $\endgroup$