Dmccooey is a site that contains 3D virtual models and coordinates of a large variety of polyhedra.
An example of a coordinates file you can retrieve from the site is:
Propello Tetrahedron (canonical) C0 = 0.139680581996106531822799916239 C1 = 0.509755332493385520099017792717 C2 = 0.606267870861478462919986663126 C0 = (cbrt(4 * (11 + 3 * sqrt(69))) - cbrt(4 * (3 * sqrt(69) - 11)) - 1) / 3 C1 = (cbrt(4 * (25 + 3 * sqrt(69))) + cbrt(4 * (25 - 3 * sqrt(69))) - 5) / 3 C2 = (cbrt(4 * (371 + 33*sqrt(69))) + cbrt(4 * (371 - 33*sqrt(69))) - 1) / 33 V0 = ( C1, C0, 1.0) V1 = ( C1, -C0, -1.0) V2 = ( -C1, -C0, 1.0) V3 = ( -C1, C0, -1.0) V4 = ( 1.0, C1, C0) V5 = ( 1.0, -C1, -C0) V6 = (-1.0, -C1, C0) V7 = (-1.0, C1, -C0) V8 = ( C0, 1.0, C1) V9 = ( C0, -1.0, -C1) V10 = ( -C0, -1.0, C1) V11 = ( -C0, 1.0, -C1) V12 = ( C2, -C2, C2) V13 = ( C2, C2, -C2) V14 = ( -C2, C2, C2) V15 = ( -C2, -C2, -C2) Faces: { 12, 0, 2, 10 } { 12, 10, 9, 5 } { 12, 5, 4, 0 } { 13, 1, 3, 11 } { 13, 11, 8, 4 } { 13, 4, 5, 1 } { 14, 2, 0, 8 } { 14, 8, 11, 7 } { 14, 7, 6, 2 } { 15, 3, 1, 9 } { 15, 9, 10, 6 } { 15, 6, 7, 3 } { 0, 4, 8 } { 1, 5, 9 } { 2, 6, 10 } { 3, 7, 11 } Each time that I want to open such a polyhedron in mathematica, I copy the information and manually adjust it to fit the language for mathematica.
For example, I rewrote the information above to the code shown below:
C0 = 0.139680581996106531822799916239; C1 = 0.509755332493385520099017792717; C2 = 0.606267870861478462919986663126; V0 = { C1, C0, 1.0}; V1 = { C1, -C0, -1.0}; V2 = { -C1, -C0, 1.0}; V3 = { -C1, C0, -1.0}; V4 = { 1.0, C1, C0}; V5 = { 1.0, -C1, -C0}; V6 = {-1.0, -C1, C0}; V7 = {-1.0, C1, -C0}; V8 = { C0, 1.0, C1}; V9 = { C0, -1.0, -C1}; V10 = { -C0, -1.0, C1}; V11 = { -C0, 1.0, -C1}; V12 = { C2, -C2, C2}; V13 = { C2, C2, -C2}; V14 = { -C2, C2, C2}; V15 = { -C2, -C2, -C2}; vTSIc = {}; For[i = 0, i <= 79, i++; AppendTo[vTSIc, ToExpression[StringJoin[{"V", ToString[i-1]}]]] ] fTSIc = {{13, 1, 3, 11}, {13, 11, 10, 6}, {13, 6, 5, 1}, {14, 2, 4, 12}, {14, 12, 9, 5}, {14, 5, 6, 2}, {15, 3, 1, 9 }, {15, 9, 12, 8}, {15, 8, 7, 3}, {16, 4, 2, 10}, {16, 10, 11, 7}, {16, 7, 8, 4}, {1, 5, 9}, {2, 6, 10}, {3, 7, 11}, {4, 8, 12}}; Show[Graphics3D[{EdgeForm[{Thick}], Polygon /@ Map[vTSIc[[#1]] & , fTSIc, {2}]}], PlotRange-> All,Boxed -> False] I am sure there must be a more efficient way than manually changing all curved brackets () seen for the vertices V0-V15 to the curly ones {}, adding semi-colons ; to the end of the lines and copy-pasting the faces in a new list.
I am wondering if anyone has done this before or if there are ways to automate it.
Thank you in advance.




PolyhedronData[]$\endgroup$