I am solving the matrix equation to pass from the Fokker-Planck to the Langevin equation. Specifically: \begin{equation} D=BB^T \end{equation} where $$ D= \left(\begin{matrix} l x_1(1-r_1) + e_1 r_1 & 0 & l x_1(1-r_1) & 0 \\ 0 & l x_2(1-r_2) + e_2 r_2 & 0 & l x_2(1-r_2) \\ l x_1(1-r_1) & 0 & l x_1+2D_{11}x_1 + D_{12}x_1 +D_{21}x_2 c_{11}r_1 +c_{12}r_2 & D_{12}x_1 +D_{21}x_2 \\ 0 & l x_2(1-r_2) & D_{12}x_1 +D_{21}x_2 & l x_2+2D_{22}x_2 + D_{12}x_1 +D_{21}x_2 c_{21}r_1 +c_{22}r_2 \end{matrix}\right) $$
where $B$ is symmetric. I am trying to solve the equation for $\mathbb{B}$ as follows:
Dmatrix = {{e1 r1 + l x1 (1 - r1), 0, l x1 (1 - r1), 0}, {0, e2 r2 + l x2 (1 - r2), 0, l x2 (1 - r2)}, {l x1 (1 - r1), 0, l x1 + 2 D11 x1 + c11 r1 + D12 x1 + D21 x2 + c12 r2, D12 x1 + D21 x2}, {0, l x2 (1 - r2), D12 x1 + D21 x2, l x2 + D21 x2 + 2 D22 x2 + D12 x1 + c21 r1 + c22 r2}}; B = Array[Y, {4, 4}]; For[i = 1, i < 5, i++, For[j = i, j < 5, j++, B[[j, i]] = B[[i, j]]]]; sol = Solve[Dmatrix == B . Transpose[B], Flatten[B]]; B /. Flatten[sol] // MatrixForm But I am not finding a proper solution. Mathematically I know that more than a solution will be possible, since these are 16 quadratic equations. Can anyone help me?