In this code, I want to calculate distance between two lines SC and AB.
Clear["Global`*"]; assumptions = {a > 0, h > 0}; {aa, bb, cc} = SSSTriangle[a, a, a][[1]]; {pA, pB, pC} = PadRight[#, 3] & /@ {aa, bb, cc}; pS = {0, 0, h}; Simplify[ RegionDistance[InfiniteLine[{pS, pC}], InfiniteLine[{pA, pB}]], Assumptions -> assumptions] How can I get the result?
PS. I work around
Clear["Global`*"]; assumptions = {a > 0, b > 0, c > 0, h > 0}; {aa, bb, cc} = SSSTriangle[a, a, a][[1]]; {pA, pB, pC} = PadRight[#, 3] & /@ {aa, bb, cc}; pS = {0, 0, h}; plane = InfinitePlane[pA, {pC - pS, pB - pA}]; Simplify[RegionDistance[plane, pC], Assumptions -> assumptions] and got
(Sqrt[3] a h)/Sqrt[3 a^2 + 4 h^2]



RegionDistanceshould be a point. $\endgroup$RegionDistancenot always work for two regions for symbolic.MinValue[ Norm[{x, y, z} - {u, v, w}], {x, y, z} ∈ InfiniteLine[{pS, pC}] && {u, v, w} ∈ InfiniteLine[{pA, pB}], {x, y, z, u, v, w}]$\endgroup$RegionDistance. The second usage case isRegionDistance[reg1,reg2]. $\endgroup$RegionDistancefor version 13. reference.wolfram.com/legacy/language/v13/ref/… $\endgroup$