Method-1
We plot the plane z==Tan[π/4] x and cut it by the half disk and filling to the bottom.
Reply to comment: To make the boundary smooth, we set AccuracyGoal -> 5 in BoundaryDiscretizeGraphics.
Clear[plot,arrow,text]; plot = Plot3D[ Tan[π/4] x, {x, y} ∈ BoundaryDiscretizeGraphics[Disk[{0, 0}, 1, {-(π/2), π/2}], AccuracyGoal -> 5], BoxRatios -> Automatic, Boxed -> False, Axes -> False, Filling -> Bottom, PlotStyle -> Directive@{LightRed, Opacity[.5]}, FillingStyle -> Red, BoundaryStyle -> Directive@{Thick, Green}, MeshFunctions -> Function[{x, y, z}, y], Mesh -> {{{0, Directive@{Blue, Thick}}}}]; arrow = Graphics3D[{Arrowheads[.03], White, Arrow@Table[ RotationTransform[t, {0, -1, 0}, {0, 0, 0}]@{.35, 0, 0}, {t, Subdivide[0, π/4, 80]}]}]; text = Graphics3D[{Dashed, AbsoluteThickness[2], Line[{{0, 0, 0}, {1, 0, 0}}], Text[Style["θ", FontFamily -> "Times", 25, White], {.4, 0, .2}]}]; Show[text, arrow, plot, Boxed -> False, ViewPoint -> {-1.3, -2.9, 1.3}]

- This method can also calculate the volume.
Integrate[ Tan[π/4] x, {x, y} ∈ Disk[{0, 0}, 1, {-(π/2), π/2}]]
2/3.
Method-2
- Before I post the previous answer,I also test the
HalfSpace,but it need to set the plotrange and the effect in Graphics3D not so good. Finally I found ConicHullRegion work perfect. - Update later.
θ1 = 0; θ2 = π/4; reg = RegionIntersection[ BoundaryDiscretizeGraphics[Cylinder[], AccuracyGoal -> 5], BoundaryDiscretizeGraphics[ ConicHullRegion[{0, 0, 0}, {{0, 1, 0}, {0, -1, 0}}, {{1, 0, Tan[θ1]}, {1, 0, Tan[θ2]}}]]]; Graphics3D[{EdgeForm[], FaceForm[Directive@{Opacity[.5], LightRed}], reg},ViewPoint -> {-1.3, -2.9, 1.3}]

- If we want to the exact value of the
Volume,we should remove the BoundaryDiscretizeGraphics.
RegionIntersection[Cylinder[], ConicHullRegion[{0, 0, 0}, {{0, 1, 0}, {0, -1, 0}}, {{1, 0, Tan[θ1]}, {1, 0, Tan[θ2]}}]] // Volume
2/3.
