The chosen example data comes were picked to be:
A000926 A003173 A014117 A034884 A046048 A072938
Which have the List Plots:

Made with the code:
A000926\[LetterSpace]data = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462, 520, 760, 840, 1320, 1365, 1848 }; A003173\[LetterSpace]data = {1, 2, 3, 7, 11, 19, 43, 67, 163}; A014117\[LetterSpace]data = {1, 2, 6, 42, 1806}; A046048\[LetterSpace]data = { 47, 62, 77, 127, 142, 157, 207, 222, 237, 287, 302, 317, 367, 382, 397, 447, 462, 477, 527, 542, 557, 607, 622, 687, 702, 752, 767, 782, 847, 862, 927, 942, 992, 1007, 1022, 1087, 1102, 1167, 1182, 1232, 1247, 1327, 1407, 1487, 1567, 1647, 1727, 1807, 2032 }; A072938\[LetterSpace]data = {1, 2, 6, 12, 60, 360, 2520}; A034884\[LetterSpace]data = {2, 3, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 72, 80, 84, 90, 96, 108, 120, 126, 132, 140, 144, 168, 180, 192, 210, 216, 240, 252, 288, 300, 336, 360, 420, 480, 504, 540, 720, 840, 1260 }; makePlot[data_, tag_] := ListPlot[ data, PlotRange -> All, PlotStyle -> Black, AxesLabel -> {"n", "aₙ"}, Frame -> True, PlotLabel -> Style[tag, Bold, 16, Black], ImageSize -> 600]; p1 = makePlot[A000926\[LetterSpace]data, "A000926"]; p2 = makePlot[A003173\[LetterSpace]data, "A003173"]; p3 = makePlot[A014117\[LetterSpace]data, "A014117"]; p4 = makePlot[A046048\[LetterSpace]data, "A046048"]; p5 = makePlot[A072938\[LetterSpace]data, "A072938"]; p6 = makePlot[A034884\[LetterSpace]data, "A034884"]; Rasterize[ Labeled[ GraphicsGrid[ Partition[{p1, p2, p3, p4, p5, p6}, 2], Spacings -> {0.8, 6.8}], Style["Finite Sequences of Interest", 24, Bold, Black], Top] ]
Then is what I have so far:
GoldBraceletPlotTextured[pts_List, barWidth_ : .06, ❁_ : 0, beadScale_ : .02] := Module[ {RotateAround, TransformPolygon, EdgeStrip, d = 1024, gold, stripes, specks, gradient, goldtexture, newPts, n, edges, strips, beadR, xMaxWidth, yMaxHeight, \[Tau]}, RotateAround[p_, \[Theta]_, c_] := c + {{Cos[\[Theta]], -Sin[\[Theta]]}, {Sin[\[Theta]], Cos[\[Theta]]}} . (p - c); TransformPolygon[pts0_List, \[Delta]_] := Module[{ang, s, newAng, L, dirs, newPts2}, ang = N@PolygonAngle@Polygon[pts0]; s = Total@Rest@ang; newAng = Join[{First@ang + \[Delta]}, Rest@ang (s - \[Delta])/s]; L = Norm /@ Differences[pts0]; \[Tau] = Pi - newAng; dirs = FoldList[ RotationTransform[#2][#1] &, Normalize[pts0[[2]] - pts0[[1]]], Rest@\[Tau]]; newPts2 = FoldList[#1 + #2[[1]]*#2[[2]] &, pts0[[1]], Transpose[{L, Most@dirs}]]; newPts2]; EdgeStrip[{p1_, p2_}, w_] := Module[{v = p2 - p1, dir, off}, dir = Normalize[v]; off = (w/2)*{-dir[[2]], dir[[1]]}; {p1 - off, p2 - off, p2 + off, p1 + off}]; SeedRandom[1]; gold = RGBColor[0.8314, 0.6863, 0.2157]; stripes = GaussianFilter[ ImageResize[ RandomImage[{1, 1.2}, {1, d}], {d, d}], 3]; specks = ImageAdjust@GaussianFilter[ Image@RandomVariate[ParetoDistribution[0.01, 5.0], {d, d}], 3]; gradient = LinearGradientImage[{Gray, White, Gray}, {d, d}]; goldtexture = ImageAdjust[ ImageAdd[ ImageMultiply[gradient, Image[ ConstantArray[gold, {d, d}]], stripes], specks], .25]; newPts = TransformPolygon[pts, ❁]; n = Length@newPts; edges = Partition[Append[newPts, First@newPts], 2, 1]; strips = EdgeStrip[#, Length[pts]*barWidth] & /@ Most[edges]; xMaxWidth = Max[newPts[[All, 1]]] - Min[newPts[[All, 1]]]; yMaxHeight = Max[newPts[[All, 2]]] - Min[newPts[[All, 2]]]; beadR = beadScale*Mean[Norm /@ Differences[newPts]]; Graphics[{ {EdgeForm[None], CapForm["Round"], Texture[goldtexture], Table[Polygon[strips[[i]], VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0, 1}}], {i, Length@strips}] }, {AbsoluteThickness[ Max[2, Length[pts]*barWidth*yMaxHeight/xMaxWidth]], CapForm["Round"], Black, Line[Last@edges] }, { EdgeForm[Directive[Black, AbsoluteThickness[1]]], FaceForm[White], Table[ Disk[newPts[[i]], beadR], {i, n}]}}, PlotRange -> All, AspectRatio -> yMaxHeight/xMaxWidth, Frame -> False, Axes -> False, ImageSize -> 800] ]
I can get reasonable looking results. But formatting the thickness so it always shows up correctly is not so easy. Here are some inputs that give reasonably looking results:
IndexPairs[list_] := Transpose[{Range[Length[list]], list}]; GoldBraceletPlotTextured[IndexPairs[A000926\[LetterSpace]data], .5, Pi/2, .2] GoldBraceletPlotTextured[IndexPairs[A003173\[LetterSpace]data], .25, Pi/2, .025] GoldBraceletPlotTextured[IndexPairs[A014117\[LetterSpace]data], 2.5, Pi/2, .025] GoldBraceletPlotTextured[IndexPairs[A046048\[LetterSpace]data], .5, Pi/2, .15] GoldBraceletPlotTextured[IndexPairs[A072938\[LetterSpace]data], 1, 3 Pi/4, .02] GoldBraceletPlotTextured[ IndexPairs[A034884\[LetterSpace]data], .2, Pi, .05]
A clearer example is done with just the points of the regular pentagon:

That was generated with the code:
orderPointsClockwise2D[pts_List, clockwise_ : True] := Module[{pts3, normal, plane, projectedPts, centroid, angles, ord, sorted}, If[ Length[DeleteDuplicates[pts]] < 3, Return[pts] ]; pts3 = Append[#, 0] & /@ pts; normal = Cross[pts3[[2]] - pts3[[1]], pts3[[3]] - pts3[[1]]]; If[normal === {0, 0, 0}, Return[pts]]; plane = First@Ordering[Abs[normal], -1]; projectedPts = Delete[#, plane] & /@ pts3; centroid = Mean[projectedPts]; angles = ArcTan[#[[1]] - centroid[[1]], #[[2]] - centroid[[2]]] & /@ projectedPts; ord = Ordering[angles]; sorted = pts[[ord]]; If[clockwise, Reverse[sorted], sorted]] pts = orderPointsClockwise2D[N[PolygonCoordinates[RegularPolygon[5]]]]; Rasterize[ Partition[Table[ GoldBraceletPlotTextured[pts, .006, ❁, .02], {❁, 0, (15 \[Pi])/8, Pi/8}], 4] // Grid, ImageSize -> 600]