I have some expression like this
exp = x^(-2 + α + β) (α g[0] ρ[ 0] - α^2 g[0] ρ[0] + 4 β g[0] ρ[0] - 2 α β g[0] ρ[0] - 4 β^2 g[0] ρ[0] - 2 x^(2 γ) κ g[0] p[0]^2 ρ[0] - 4 x^(2 γ) γ κ g[0] Log[x] p[0]^2 ρ[ 0] - 2 x^(2 γ) γ^2 κ g[ 0] Log[x]^2 p[0]^2 ρ[0] - 4 x^(γ + δ) δ κ g[0] p[0] q[ 0] ρ[0] - 4 x^(γ + δ) γ δ κ g[0] Log[ x] p[0] q[0] ρ[0] - 2 x^(2 δ) δ^2 κ g[0] q[0]^2 ρ[0]) + x^(-1 + α + β) (-α g[1] ρ[ 0] - α^2 g[1] ρ[0] + 2 β g[1] ρ[0] - 2 α β g[1] ρ[0] - 4 β^2 g[1] ρ[0] - 2 x^(2 γ) κ g[1] p[0]^2 ρ[0] - 4 x^(2 γ) γ κ g[1] Log[x] p[0]^2 ρ[ 0] - 2 x^(2 γ) γ^2 κ g[ 1] Log[x]^2 p[0]^2 ρ[0] - 4 x^(2 γ) κ g[0] p[0] p[1] ρ[0] - 4 x^(2 γ) κ g[0] Log[x] p[0] p[1] ρ[0] - 8 x^(2 γ) γ κ g[0] Log[x] p[0] p[1] ρ[ 0] - 4 x^(2 γ) γ κ g[0] Log[x]^2 p[0] p[ 1] ρ[0] - 4 x^(2 γ) γ^2 κ g[0] Log[x]^2 p[0] p[ 1] ρ[0] - 4 x^(γ + δ) δ κ g[1] p[0] q[ 0] ρ[0] - 4 x^(γ + δ) γ δ κ g[1] Log[ x] p[0] q[0] ρ[0] - 4 x^(γ + δ) δ κ g[0] p[1] q[ 0] ρ[0] - 4 x^(γ + δ) δ κ g[0] Log[x] p[1] q[ 0] ρ[0] - 4 x^(γ + δ) γ δ κ g[0] Log[ x] p[1] q[0] ρ[0] - 2 x^(2 δ) δ^2 κ g[1] q[0]^2 ρ[0] - 4 x^(γ + δ) κ g[0] p[0] q[1] ρ[0] - 4 x^(γ + δ) δ κ g[0] p[0] q[ 1] ρ[0] - 4 x^(γ + δ) γ κ g[0] Log[x] p[0] q[ 1] ρ[0] - 4 x^(γ + δ) γ δ κ g[0] Log[ x] p[0] q[1] ρ[0] - 4 x^(2 δ) δ κ g[0] q[0] q[1] ρ[0] - 4 x^(2 δ) δ^2 κ g[0] q[0] q[1] ρ[ 0] - α g[0] ρ[1] - α^2 g[0] ρ[1] - 4 β g[0] ρ[1] - 2 α β g[0] ρ[1] - 4 β^2 g[0] ρ[1] - 2 x^(2 γ) κ g[0] p[0]^2 ρ[1] - 4 x^(2 γ) γ κ g[0] Log[x] p[0]^2 ρ[ 1] - 2 x^(2 γ) γ^2 κ g[ 0] Log[x]^2 p[0]^2 ρ[1] - 4 x^(γ + δ) δ κ g[0] p[0] q[ 0] ρ[1] - 4 x^(γ + δ) γ δ κ g[0] Log[ x] p[0] q[0] ρ[1] - 2 x^(2 δ) δ^2 κ g[0] q[0]^2 ρ[1]) + x^(α + β) (-2 g[2] ρ[0] - 4 α g[2] ρ[0] - 4 β g[2] ρ[0] - 4 x^(2 γ) κ g[1] p[0] p[1] ρ[0] - 4 x^(2 γ) κ g[1] Log[x] p[0] p[1] ρ[0] - 8 x^(2 γ) γ κ g[1] Log[x] p[0] p[1] ρ[ 0] - 4 x^(2 γ) γ κ g[1] Log[x]^2 p[0] p[ 1] ρ[0] - 4 x^(2 γ) γ^2 κ g[1] Log[x]^2 p[0] p[ 1] ρ[0] - 2 x^(2 γ) κ g[0] p[1]^2 ρ[0] - 2 x^(1 + 2 γ) κ g[1] p[1]^2 ρ[0] - 4 x^(2 γ) κ g[0] Log[x] p[1]^2 ρ[0] - 4 x^(2 γ) γ κ g[0] Log[x] p[1]^2 ρ[ 0] - 4 x^(1 + 2 γ) κ g[1] Log[x] p[1]^2 ρ[ 0] - 4 x^(1 + 2 γ) γ κ g[1] Log[ x] p[1]^2 ρ[0] - 2 x^(2 γ) κ g[0] Log[x]^2 p[1]^2 ρ[0] - 4 x^(2 γ) γ κ g[0] Log[x]^2 p[1]^2 ρ[ 0] - 2 x^(2 γ) γ^2 κ g[ 0] Log[x]^2 p[1]^2 ρ[0] - 2 x^(1 + 2 γ) κ g[1] Log[x]^2 p[1]^2 ρ[0] - 4 x^(1 + 2 γ) γ κ g[ 1] Log[x]^2 p[1]^2 ρ[0] - 2 x^(1 + 2 γ) γ^2 κ g[ 1] Log[x]^2 p[1]^2 ρ[0] - 8 x^(2 γ) κ g[0] Log[x] p[0] p[2] ρ[0] - 8 x^(1 + 2 γ) κ g[1] Log[x] p[0] p[2] ρ[0] - 8 x^(2 γ) γ κ g[0] Log[x]^2 p[0] p[ 2] ρ[0] - 8 x^(1 + 2 γ) γ κ g[1] Log[x]^2 p[0] p[ 2] ρ[0] - 8 x^(1 + 2 γ) κ g[0] Log[x] p[1] p[2] ρ[0] - 8 x^(2 + 2 γ) κ g[1] Log[x] p[1] p[2] ρ[0] - 8 x^(1 + 2 γ) κ g[0] Log[x]^2 p[1] p[2] ρ[ 0] - 8 x^(1 + 2 γ) γ κ g[0] Log[x]^2 p[ 1] p[2] ρ[0] - 8 x^(2 + 2 γ) κ g[1] Log[x]^2 p[1] p[2] ρ[ 0] - 8 x^(2 + 2 γ) γ κ g[1] Log[x]^2 p[ 1] p[2] ρ[0] - 8 x^(2 + 2 γ) κ g[0] Log[x]^2 p[2]^2 ρ[0] - 8 x^(3 + 2 γ) κ g[1] Log[x]^2 p[2]^2 ρ[0] - 4 x^(γ + δ) δ κ g[1] p[1] q[ 0] ρ[0] - 4 x^(γ + δ) δ κ g[1] Log[x] p[1] q[ 0] ρ[0] - 4 x^(γ + δ) γ δ κ g[1] Log[ x] p[1] q[0] ρ[0] - 8 x^(γ + δ) δ κ g[0] Log[x] p[2] q[ 0] ρ[0] - 8 x^(1 + γ + δ) δ κ g[1] Log[x] p[ 2] q[0] ρ[0] - 4 x^(γ + δ) κ g[1] p[0] q[1] ρ[0] - 4 x^(γ + δ) δ κ g[1] p[0] q[ 1] ρ[0] - 4 x^(γ + δ) γ κ g[1] Log[x] p[0] q[ 1] ρ[0] - 4 x^(γ + δ) γ δ κ g[1] Log[ x] p[0] q[1] ρ[0] - 4 x^(γ + δ) κ g[0] p[1] q[1] ρ[0] - 4 x^(γ + δ) δ κ g[0] p[1] q[ 1] ρ[0] - 4 x^(1 + γ + δ) κ g[1] p[1] q[1] ρ[ 0] - 4 x^(1 + γ + δ) δ κ g[1] p[ 1] q[1] ρ[0] - 4 x^(γ + δ) κ g[0] Log[x] p[1] q[1] ρ[ 0] - 4 x^(γ + δ) γ κ g[0] Log[ x] p[1] q[1] ρ[0] - 4 x^(γ + δ) δ κ g[0] Log[x] p[1] q[ 1] ρ[0] - 4 x^(γ + δ) γ δ κ g[0] Log[ x] p[1] q[1] ρ[0] - 4 x^(1 + γ + δ) κ g[1] Log[x] p[1] q[ 1] ρ[0] - 4 x^(1 + γ + δ) γ κ g[1] Log[x] p[ 1] q[1] ρ[0] - 4 x^(1 + γ + δ) δ κ g[1] Log[x] p[ 1] q[1] ρ[0] - 4 x^(1 + γ + δ) γ δ κ g[ 1] Log[x] p[1] q[1] ρ[0] - 8 x^(1 + γ + δ) κ g[0] Log[x] p[2] q[ 1] ρ[0] - 8 x^(1 + γ + δ) δ κ g[0] Log[x] p[ 2] q[1] ρ[0] - 8 x^(2 + γ + δ) κ g[1] Log[x] p[2] q[ 1] ρ[0] - 8 x^(2 + γ + δ) δ κ g[1] Log[x] p[ 2] q[1] ρ[0] - 4 x^(2 δ) δ κ g[1] q[0] q[1] ρ[0] - 4 x^(2 δ) δ^2 κ g[1] q[0] q[1] ρ[0] - 2 x^(2 δ) κ g[0] q[1]^2 ρ[0] - 4 x^(2 δ) δ κ g[0] q[1]^2 ρ[0] - 2 x^(2 δ) δ^2 κ g[0] q[1]^2 ρ[0] - 2 x^(1 + 2 δ) κ g[1] q[1]^2 ρ[0] - 4 x^(1 + 2 δ) δ κ g[1] q[1]^2 ρ[0] - 2 x^(1 + 2 δ) δ^2 κ g[1] q[1]^2 ρ[ 0] - 8 x^(γ + δ) κ g[0] p[0] q[2] ρ[ 0] - 8 x^(1 + γ + δ) κ g[1] p[0] q[ 2] ρ[0] - 8 x^(γ + δ) γ κ g[0] Log[x] p[0] q[ 2] ρ[0] - 8 x^(1 + γ + δ) γ κ g[1] Log[x] p[ 0] q[2] ρ[0] - 8 x^(1 + γ + δ) κ g[0] p[1] q[2] ρ[ 0] - 8 x^(2 + γ + δ) κ g[1] p[1] q[ 2] ρ[0] - 8 x^(1 + γ + δ) κ g[0] Log[x] p[1] q[ 2] ρ[0] - 8 x^(1 + γ + δ) γ κ g[0] Log[x] p[ 1] q[2] ρ[0] - 8 x^(2 + γ + δ) κ g[1] Log[x] p[1] q[ 2] ρ[0] - 8 x^(2 + γ + δ) γ κ g[1] Log[x] p[ 1] q[2] ρ[0] - 16 x^(2 + γ + δ) κ g[0] Log[x] p[2] q[ 2] ρ[0] - 16 x^(3 + γ + δ) κ g[1] Log[x] p[2] q[ 2] ρ[0] - 8 x^(2 δ) δ κ g[0] q[0] q[2] ρ[0] - 8 x^(1 + 2 δ) δ κ g[1] q[0] q[2] ρ[ 0] - 8 x^(1 + 2 δ) κ g[0] q[1] q[2] ρ[0] - 8 x^(1 + 2 δ) δ κ g[0] q[1] q[2] ρ[ 0] - 8 x^(2 + 2 δ) κ g[1] q[1] q[2] ρ[0] - 8 x^(2 + 2 δ) δ κ g[1] q[1] q[2] ρ[ 0] - 8 x^(2 + 2 δ) κ g[0] q[2]^2 ρ[0] - 8 x^(3 + 2 δ) κ g[1] q[2]^2 ρ[0] - 2 g[1] ρ[1] - 4 α g[1] ρ[1] - 6 β g[1] ρ[1] - 4 β^2 g[1] ρ[1] - 6 x g[2] ρ[1] - 2 x^(2 γ) κ g[1] p[0]^2 ρ[1] - 4 x^(2 γ) γ κ g[1] Log[x] p[0]^2 ρ[ 1] - 2 x^(2 γ) γ^2 κ g[ 1] Log[x]^2 p[0]^2 ρ[1] - 4 x^(2 γ) κ g[0] p[0] p[1] ρ[1] - 4 x^(1 + 2 γ) κ g[1] p[0] p[1] ρ[1] - 4 x^(2 γ) κ g[0] Log[x] p[0] p[1] ρ[1] - 8 x^(2 γ) γ κ g[0] Log[x] p[0] p[1] ρ[ 1] - 4 x^(1 + 2 γ) κ g[1] Log[x] p[0] p[ 1] ρ[1] - 8 x^(1 + 2 γ) γ κ g[1] Log[x] p[0] p[ 1] ρ[1] - 4 x^(2 γ) γ κ g[0] Log[x]^2 p[0] p[ 1] ρ[1] - 4 x^(2 γ) γ^2 κ g[0] Log[x]^2 p[0] p[ 1] ρ[1] - 4 x^(1 + 2 γ) γ κ g[1] Log[x]^2 p[0] p[ 1] ρ[1] - 4 x^(1 + 2 γ) γ^2 κ g[1] Log[x]^2 p[0] p[ 1] ρ[1] - 2 x^(1 + 2 γ) κ g[0] p[1]^2 ρ[1] - 2 x^(2 + 2 γ) κ g[1] p[1]^2 ρ[1] - 4 x^(1 + 2 γ) κ g[0] Log[x] p[1]^2 ρ[1] - 4 x^(1 + 2 γ) γ κ g[0] Log[ x] p[1]^2 ρ[1] - 4 x^(2 + 2 γ) κ g[1] Log[x] p[1]^2 ρ[1] - 4 x^(2 + 2 γ) γ κ g[1] Log[ x] p[1]^2 ρ[1] - 2 x^(1 + 2 γ) κ g[0] Log[x]^2 p[1]^2 ρ[1] - 4 x^(1 + 2 γ) γ κ g[ 0] Log[x]^2 p[1]^2 ρ[1] - 2 x^(1 + 2 γ) γ^2 κ g[ 0] Log[x]^2 p[1]^2 ρ[1] - 2 x^(2 + 2 γ) κ g[1] Log[x]^2 p[1]^2 ρ[1] - 4 x^(2 + 2 γ) γ κ g[ 1] Log[x]^2 p[1]^2 ρ[1] - 2 x^(2 + 2 γ) γ^2 κ g[ 1] Log[x]^2 p[1]^2 ρ[1] - 8 x^(1 + 2 γ) κ g[0] Log[x] p[0] p[2] ρ[1] - 8 x^(2 + 2 γ) κ g[1] Log[x] p[0] p[2] ρ[1] - 8 x^(1 + 2 γ) γ κ g[0] Log[x]^2 p[0] p[ 2] ρ[1] - 8 x^(2 + 2 γ) γ κ g[1] Log[x]^2 p[0] p[ 2] ρ[1] - 8 x^(2 + 2 γ) κ g[0] Log[x] p[1] p[2] ρ[1] - 8 x^(3 + 2 γ) κ g[1] Log[x] p[1] p[2] ρ[1] - 8 x^(2 + 2 γ) κ g[0] Log[x]^2 p[1] p[2] ρ[ 1] - 8 x^(2 + 2 γ) γ κ g[0] Log[x]^2 p[ 1] p[2] ρ[1] - 8 x^(3 + 2 γ) κ g[1] Log[x]^2 p[1] p[2] ρ[ 1] - 8 x^(3 + 2 γ) γ κ g[1] Log[x]^2 p[ 1] p[2] ρ[1] - 8 x^(3 + 2 γ) κ g[0] Log[x]^2 p[2]^2 ρ[1] - 8 x^(4 + 2 γ) κ g[1] Log[x]^2 p[2]^2 ρ[1] - 4 x^(γ + δ) δ κ g[1] p[0] q[ 0] ρ[1] - 4 x^(γ + δ) γ δ κ g[1] Log[ x] p[0] q[0] ρ[1] - 4 x^(γ + δ) δ κ g[0] p[1] q[ 0] ρ[1] - 4 x^(1 + γ + δ) δ κ g[1] p[1] q[ 0] ρ[1] - 4 x^(γ + δ) δ κ g[0] Log[x] p[1] q[ 0] ρ[1] - 4 x^(γ + δ) γ δ κ g[0] Log[ x] p[1] q[0] ρ[1] - 4 x^(1 + γ + δ) δ κ g[1] Log[x] p[ 1] q[0] ρ[1] - 4 x^(1 + γ + δ) γ δ κ g[ 1] Log[x] p[1] q[0] ρ[1] - 8 x^(1 + γ + δ) δ κ g[0] Log[x] p[ 2] q[0] ρ[1] - 8 x^(2 + γ + δ) δ κ g[1] Log[x] p[ 2] q[0] ρ[1] - 2 x^(2 δ) δ^2 κ g[1] q[0]^2 ρ[1] - 4 x^(γ + δ) κ g[0] p[0] q[1] ρ[1] - 4 x^(γ + δ) δ κ g[0] p[0] q[ 1] ρ[1] - 4 x^(1 + γ + δ) κ g[1] p[0] q[1] ρ[ 1] - 4 x^(1 + γ + δ) δ κ g[1] p[ 0] q[1] ρ[1] - 4 x^(γ + δ) γ κ g[0] Log[x] p[0] q[ 1] ρ[1] - 4 x^(γ + δ) γ δ κ g[0] Log[ x] p[0] q[1] ρ[1] - 4 x^(1 + γ + δ) γ κ g[1] Log[x] p[ 0] q[1] ρ[1] - 4 x^(1 + γ + δ) γ δ κ g[ 1] Log[x] p[0] q[1] ρ[1] - 4 x^(1 + γ + δ) κ g[0] p[1] q[1] ρ[ 1] - 4 x^(1 + γ + δ) δ κ g[0] p[ 1] q[1] ρ[1] - 4 x^(2 + γ + δ) κ g[1] p[1] q[1] ρ[ 1] - 4 x^(2 + γ + δ) δ κ g[1] p[ 1] q[1] ρ[1] - 4 x^(1 + γ + δ) κ g[0] Log[x] p[1] q[ 1] ρ[1] - 4 x^(1 + γ + δ) γ κ g[0] Log[x] p[ 1] q[1] ρ[1] - 4 x^(1 + γ + δ) δ κ g[0] Log[x] p[ 1] q[1] ρ[1] - 4 x^(1 + γ + δ) γ δ κ g[ 0] Log[x] p[1] q[1] ρ[1] - 4 x^(2 + γ + δ) κ g[1] Log[x] p[1] q[ 1] ρ[1] - 4 x^(2 + γ + δ) γ κ g[1] Log[x] p[ 1] q[1] ρ[1] - 4 x^(2 + γ + δ) δ κ g[1] Log[x] p[ 1] q[1] ρ[1] - 4 x^(2 + γ + δ) γ δ κ g[ 1] Log[x] p[1] q[1] ρ[1] - 8 x^(2 + γ + δ) κ g[0] Log[x] p[2] q[ 1] ρ[1] - 8 x^(2 + γ + δ) δ κ g[0] Log[x] p[ 2] q[1] ρ[1] - 8 x^(3 + γ + δ) κ g[1] Log[x] p[2] q[ 1] ρ[1] - 8 x^(3 + γ + δ) δ κ g[1] Log[x] p[ 2] q[1] ρ[1] - 4 x^(2 δ) δ κ g[0] q[0] q[1] ρ[1] - 4 x^(2 δ) δ^2 κ g[0] q[0] q[1] ρ[1] - 4 x^(1 + 2 δ) δ κ g[1] q[0] q[1] ρ[ 1] - 4 x^(1 + 2 δ) δ^2 κ g[1] q[0] q[ 1] ρ[1] - 2 x^(1 + 2 δ) κ g[0] q[1]^2 ρ[1] - 4 x^(1 + 2 δ) δ κ g[0] q[1]^2 ρ[1] - 2 x^(1 + 2 δ) δ^2 κ g[0] q[1]^2 ρ[ 1] - 2 x^(2 + 2 δ) κ g[1] q[1]^2 ρ[1] - 4 x^(2 + 2 δ) δ κ g[1] q[1]^2 ρ[1] - 2 x^(2 + 2 δ) δ^2 κ g[1] q[1]^2 ρ[ 1] - 8 x^(1 + γ + δ) κ g[0] p[0] q[ 2] ρ[1] - 8 x^(2 + γ + δ) κ g[1] p[0] q[2] ρ[ 1] - 8 x^(1 + γ + δ) γ κ g[0] Log[ x] p[0] q[2] ρ[1] - 8 x^(2 + γ + δ) γ κ g[1] Log[x] p[ 0] q[2] ρ[1] - 8 x^(2 + γ + δ) κ g[0] p[1] q[2] ρ[ 1] - 8 x^(3 + γ + δ) κ g[1] p[1] q[ 2] ρ[1] - 8 x^(2 + γ + δ) κ g[0] Log[x] p[1] q[ 2] ρ[1] - 8 x^(2 + γ + δ) γ κ g[0] Log[x] p[ 1] q[2] ρ[1] - 8 x^(3 + γ + δ) κ g[1] Log[x] p[1] q[ 2] ρ[1] - 8 x^(3 + γ + δ) γ κ g[1] Log[x] p[ 1] q[2] ρ[1] - 16 x^(3 + γ + δ) κ g[0] Log[x] p[2] q[ 2] ρ[1] - 16 x^(4 + γ + δ) κ g[1] Log[x] p[2] q[ 2] ρ[1] - 8 x^(1 + 2 δ) δ κ g[0] q[0] q[2] ρ[ 1] - 8 x^(2 + 2 δ) δ κ g[1] q[0] q[ 2] ρ[1] - 8 x^(2 + 2 δ) κ g[0] q[1] q[2] ρ[1] - 8 x^(2 + 2 δ) δ κ g[0] q[1] q[2] ρ[ 1] - 8 x^(3 + 2 δ) κ g[1] q[1] q[2] ρ[1] - 8 x^(3 + 2 δ) δ κ g[1] q[1] q[2] ρ[ 1] - 8 x^(3 + 2 δ) κ g[0] q[2]^2 ρ[1] - 8 x^(4 + 2 δ) κ g[1] q[2]^2 ρ[1] - 8 g[0] ρ[2] - 4 α g[0] ρ[2] - 16 β g[0] ρ[2] - 12 x g[1] ρ[2] - 16 x β g[1] ρ[2]); What I want to do is to organize the expression, i.e., to collect the coefficient of the same expression of x. However, even Collect[exp, x^_] cannot return a good result. How can I deal with it?

Log[x]etc.? $\endgroup$xtreating all other non-power expressions depended onxas part of coefficients. $\endgroup$Collect[exp, x^_]does not work. Either that means that it fails your interpretation and not all powers are collected; or it means that collecting powers does not "collect the coefficient of the same expression ofx" (emphasis mine). Or perhaps OP has another meaning I haven't imagined. $\endgroup$x" collected. I don't know what the OP wants, which was the point of my first comment. You may be right; I may be right; or the OP has something else in mind, and we're both wrong (seems less likely, though). $\endgroup$