5
$\begingroup$
f1 = a x^2 + b x + c + x^3 

(* a x^2+b x+c+x^3 *)

f1 /. x -> (x - a/3) // Expand 

(* (2 a^3)/27-(a^2 x)/3-(a b)/3+b x+c+x^3 *)

I've tried this:

f1 /. x -> (x - a/3) // Expand // Collect[#, x] & 

(* (2 a^3)/27+x (b-a^2/3)-(a b)/3+c+x^3 *)

f1 /. x -> (x - a/3) // Expand // Collect[#, x] & // PolynomialForm 

(* (2 a^3)/27-(b a)/3+x^3+c+(b-a^2/3) x *)

$\endgroup$
1
  • 1
    $\begingroup$ You can extract the coefficients of $x$ as a list using f1 /. x -> (x - a/3) // CoefficientList[#, x] &. $\endgroup$ Commented Nov 19, 2013 at 17:36

2 Answers 2

8
$\begingroup$

Try this formatting

OrderedForm[x_] := HoldForm[+##] & @@ (x^#1[[1]] #2 & @@@ CoefficientRules[#, x]) &; f1 /. x -> (x - a/3) // OrderedForm[x] 
x^3+(-(a^2/3)+b) x+((2 a^3)/27-(a b)/3+c) 

See also my answer here.

$\endgroup$
3
$\begingroup$

The OP almost had it with attempting to use PolynomialForm[]. All that was missing is the use of an appropriate setting:

PolynomialForm[a x^2 + b x + c + x^3 /. x -> (x - a/3), TraditionalOrder -> True] (x - a/3)^3 + a (x - a/3)^2 + b (x - a/3) + c 

As is usual with *Form[] functions, this is only suitable for display/pretty printing.

$\endgroup$

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.