3
$\begingroup$

I want to expand the following expression into powers of $\cos(u)$ only:

a1 + a2 Cos[2 u] + a3 Cos[4 u] + a4 Cos[6 u] 

The answer that I want (and which I found by hand) is :

(a1 + a3 - a2 - a4) + (2 a2 - 8 a3 + 18 a4) Cos[u]^2 + (8 a3 - 48 a4) Cos[u]^4 + (32 a4) Cos[u]^6 

As you see it contains only powers of $\cos (u)$. But when I use the TrigExpand, which is supposed to simplify the expression into powers of trigonometric functions, it gives this:

1 + a2 Cos[u]^2 + a3 Cos[u]^4 + a4 Cos[u]^6 - a2 Sin[u]^2 - 6 a3 Cos[u]^2 Sin[u]^2 - 15 a4 Cos[u]^4 Sin[u]^2 + a3 Sin[u]^4 + 15 a4 Cos[u]^2 Sin[u]^4 - a4 Sin[u]^6 

Is it possible to make TrigExpand to simplify only in terms of $\cos (u)$ or $\sin (u)$? (or maybe using another command instead of TrigExpand)

By the way, It is my first work done in Mathematica.

$\endgroup$
1
  • 1
    $\begingroup$ Could use post-process the TrigExpand with PolynomialReduce in order to exchange one trig in favor of the other. In[8]:= PolynomialReduce[TrigExpand[expr], Sin[u]^2 + Cos[u]^2 - 1, Cos[u]][[2]] Out[8]= a1 + a2 + a3 + a4 - 2 a2 Sin[u]^2 - 8 a3 Sin[u]^2 - 18 a4 Sin[u]^2 + 8 a3 Sin[u]^4 + 48 a4 Sin[u]^4 - 32 a4 Sin[u]^6 $\endgroup$ Commented Jun 6, 2014 at 14:14

2 Answers 2

5
$\begingroup$
expr = a1 + a2 Cos[2 u] + a3 Cos[4 u] + a4 Cos[6 u]; (expr // TrigExpand) /. Sin[x_] -> (1 - Cos[x]^2)^(1/2) // Collect[#, Cos[_]] & 

a1 - a2 + a3 - a4 + (2 a2 - 8 a3 + 18 a4) Cos[ u]^2 + (8 a3 - 48 a4) Cos[u]^4 + 32 a4 Cos[u]^6

(expr // TrigExpand) /. Cos[x_] -> (1 - Sin[x]^2)^(1/2) // Collect[#, Sin[_]] & 

a1 + a2 + a3 + a4 + (-2 a2 - 8 a3 - 18 a4) Sin[ u]^2 + (8 a3 + 48 a4) Sin[u]^4 - 32 a4 Sin[u]^6

$\endgroup$
2
  • $\begingroup$ Thanks. Can you explain a little what the code does? $\endgroup$ Commented Jun 6, 2014 at 13:32
  • 1
    $\begingroup$ After TrigExpand, ReplaceAll is used with a trig identity to remove undesired trig functions, then like terms are collected. In Mathematica, highlight a function or operator then press F1 for additional information. $\endgroup$ Commented Jun 6, 2014 at 13:45
2
$\begingroup$

Some alternative approaches can be found in How to expand tan(x+y) as normal form. Here is my answer from that link, applied to your expression:

expr = a1 + a2 Cos[2 u] + a3 Cos[4 u] + a4 Cos[6 u]; Simplify[TrigExpand[expr /. u -> ArcSin[a]]] /. a -> Sin[u] (* ==> a1 + a2 + a3 + a4 - 2 a2 Sin[u]^2 - 8 a3 Sin[u]^2 - 18 a4 Sin[u]^2 + 8 a3 Sin[u]^4 + 48 a4 Sin[u]^4 - 32 a4 Sin[u]^6 *) 

You can also add

Collect[%, Sin[u]] (* ==> a1 + a2 + a3 + a4 + (-2 a2 - 8 a3 - 18 a4) Sin[ u]^2 + (8 a3 + 48 a4) Sin[u]^4 - 32 a4 Sin[u]^6 *) 
$\endgroup$

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.