Consider the MathieuCharacteristicA function, which is a piecewise function according to the documentation. The discontinuity happens at integer number.
With[{V0 = -1}, Plot[MathieuCharacteristicA[κ, V0], {κ, -2.5, 2.5}]] 
Consider the point approaching k=2 from the left side , and plot the Mathieu funtions near that point.
ParallelTable[ Plot[Evaluate@ With[{V0 = -1, κ = 2 - ϵ}, Re@MathieuC[MathieuCharacteristicA[κ, V0], V0, z]], {z, -10, 10}, PlotRange -> All, ImageSize -> Medium], {ϵ, {10^-8, 15/10*10^-8, 18/10*10^-8, 2*10^-8}}] 
We see that from points k=2-10^-8 , k=2-1.5*10^-8 to points k=1.8*^-8, k=2*^-8, there are big discontinouity. Why does this big discontinuity happen in the Mathieu function, even we are still away from the piecewise point? Which result is correct?
Moreover, as I increase the working precision, the results changes. Which results should I trust?
ParallelTable[ Plot[Evaluate@ With[{V0 = -1, κ = 2 - ϵ}, Re@MathieuC[MathieuCharacteristicA[κ, V0], V0, z]], {z, -10, 10}, PlotRange -> All, ImageSize -> Medium, WorkingPrecision -> 50], {ϵ, {10^-8, 15/10*10^-8, 18/10*10^-8, 2*10^-8}}] 
Update:
More strange behavior
NLimit[ Re@MathieuC[MathieuCharacteristicA[κ, -1], -1, 0], κ -> 2, Direction -> 1, WorkingPrecision -> 100] (* 0.000026560352729499428275267693547091828644960849846890155742135607985075453865741662994877041 *) N[ Table[Re@MathieuC[MathieuCharacteristicA[2 - ϵ, -1], -1, 0], {ϵ, {10^-6, 10^-8, 10^-10, 10^-20, 10^-40, 10^-60, 10^-100}}], 100] (* \ {9.375519741470728355592491183508603286638427801561870220416306315833951776806837902179623867179198570*10^-6, 9.375519742493871990285719573456924995106820123921565403331967009687923231481580841077469030562191305*10^-8, 9.375519742493974304649207591451232553957148872416907065490732452953108780592926489536671069329119067*10^-10, 9.375519742493974314881667185336397875216528878100913700967589255793432748631135267810942389900367393*10^-20, 9.375519654864253585910474819580416042344587293945440367769556457939085038181962308922619162634748808*10^-40, 1.114388591781733115021002428520876171768008184684161143978162399223107768160400228809114697590700165, 1.114388591781733115021002428520876171768008184684161143978162399223107768160400228809114697590700165} *) What's the correct limit for k->2 ?
WorkingPrecisionother than the default, which isMachinePrecision. In other words, precision tracking is off by default forPlot. This is a very bad thing for numerically sensitive functions such as the Mathieu functions. $\endgroup$