Let's have a look at Plot:

If you specify xmin and xmax, the function f is calculated with these values and plotted. Actually, you plug xmin and xmax in the function f and get the corresponding result.The plot corresponds to your specifications.
The integral is given the name f:
f = ∫1/(x^3 - 1) \[DifferentialD]x (* -(ArcTan[(1 + 2 x)/Sqrt[3]]/Sqrt[3]) + 1/3 Log[1 - x] - 1/6 Log[1 + x + x^2] *)
If we generate some plots with different xmin and xmax we can represent the behavior of xmin and xmax like so:
po0 = Plot[f, {x, 1, 2}]; po1 = Plot[f, {x, -1, 1}]; po2 = Plot[f, {x, -5, 5}]; po3 = Plot[f, {x, -5, 5}, PlotRange -> All];

This means: a plot of f as a function of x from xmin to xmax is not equal to the PlotRange.
You can check FunctionDomain and FunctionRange with:
{FunctionDomain[f, x], FunctionRange[f, x, y]}
$\left\{x<1,y<\frac{\pi }{2 \sqrt{3}}\right\}$
To check if expression contains a complex expression you can use:
FreeQ[f, _Complex] (* True *)
or
FunctionDomain[f, x, Complexes]
$(x-1) \left(2 \sqrt{3} x-3 i+\sqrt{3}\right) \left(2 \sqrt{3} x+3 i+\sqrt{3}\right) \left(x^2+x+1\right)\neq 0$
And now we can plot the function f with real part, imaginary part and absolute value:
Plot[{Re[f], Im[f], Abs[f]}, {x, -4, 4}, PlotRange -> All, PlotTheme -> "Detailed"]
