Skip to main content
Left closed in review as "Original close reason(s) were not resolved" by Jon Custer, John Rennie, Vincent Thacker
Post Closed as "Needs details or clarity" by Miyase, joseph h, Matt Hanson
added 14 characters in body
Source Link
John Eastmond
  • 1
  • 2
  • 25
  • 50

Maxwell's equations in linear homogeneous matter: $$ \begin{eqnarray} \nabla\cdot\mathbf{E}&=&\frac{\rho}{\epsilon},\tag{1}\\ \nabla\times\mathbf{E}&=&-\frac{\partial\mathbf{B}}{\partial t},\tag{2}\\ \nabla\cdot\mathbf{B}&=&0,\tag{3}\\ \nabla\times\mathbf{B}&=&\mu\,\mathbf{J}+\frac{1}{c^2}\frac{\partial\mathbf{E}}{\partial t}.\tag{4} \end{eqnarray} $$ Equations $(2)$ and $(3)$ have solutions in terms of the scalar potential $\phi$ and vector potential $\mathbf{A}$: $$ \begin{eqnarray} \mathbf{E}&=&-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t},\tag{5}\\ \mathbf{B}&=&\nabla\times\mathbf{A}.\tag{6} \end{eqnarray} $$ By substituting equations $(5)$ and $(6)$ into equations $(1)$ and $(4)$ using the Lorenz gauge $$\nabla\cdot\mathbf{A}+\frac{1}{c^2}\frac{\partial\phi}{\partial t}=0\tag{7}$$ and the vector identity $$\nabla\times(\nabla\times\mathbf{A})=\nabla(\nabla\cdot\mathbf{A})-\nabla^2\mathbf{A}\tag{8}$$ we obtain wave equations for $\phi$ and $\mathbf{A}$: $$ \begin{eqnarray} \nabla^2\phi-\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2}&=&-\frac{\rho}{\epsilon},\tag{9}\\ \nabla^2\mathbf{A}-\frac{1}{c^2}\frac{\partial^2\mathbf{A}}{\partial t^2}&=&-\mu\mathbf{J}.\tag{10} \end{eqnarray} $$ Imagine two linear isotropichomogeneous dielectrics meet at a smooth interface: region $1$ has permittivity $\epsilon_1$ and region $2$ has permittivity $\epsilon_2$.

By using a pill-box across the interface Gauss's law, equation $(1)$, implies the following condition for the component of the electric field normal to the interface: $$\epsilon_2\,\mathbf{E}_{2n}-\epsilon_1\,\mathbf{E}_{1n}=\rho_A\tag{11}$$ where $\rho_A$ is the surface density of free charges.

Substituting equation $(5)$ into equation $(11)$ gives $$\epsilon_2\left(-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t}\right)_{2n}-\epsilon_1\left(-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t}\right)_{1n}=\rho_A.\tag{12}$$

However the wave equation for the scalar potential $\phi$, equation $(9)$, also has a matching condition across the interface which can be derived using a pill-box. Noting that $\nabla^2\phi=\nabla\cdot\nabla\phi$ one can use the divergence theorem in the limit of zero pill-box height to obtain $$\epsilon_2(-\nabla\phi)_{2n}-\epsilon_1(-\nabla\phi)_{1n}=\rho_A.\tag{13}$$ The contradiction between equations $(12)$ and $(13)$ does not seem to be due to writing equations in terms of $\phi$ and $\mathbf{A}$ since $\mathbf{E}$ and $\mathbf{B}$ are gauge invariant.

Does this show that Maxwell's equations are inconsistent?

Maxwell's equations in linear matter: $$ \begin{eqnarray} \nabla\cdot\mathbf{E}&=&\frac{\rho}{\epsilon},\tag{1}\\ \nabla\times\mathbf{E}&=&-\frac{\partial\mathbf{B}}{\partial t},\tag{2}\\ \nabla\cdot\mathbf{B}&=&0,\tag{3}\\ \nabla\times\mathbf{B}&=&\mu\,\mathbf{J}+\frac{1}{c^2}\frac{\partial\mathbf{E}}{\partial t}.\tag{4} \end{eqnarray} $$ Equations $(2)$ and $(3)$ have solutions in terms of the scalar potential $\phi$ and vector potential $\mathbf{A}$: $$ \begin{eqnarray} \mathbf{E}&=&-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t},\tag{5}\\ \mathbf{B}&=&\nabla\times\mathbf{A}.\tag{6} \end{eqnarray} $$ By substituting equations $(5)$ and $(6)$ into equations $(1)$ and $(4)$ using the Lorenz gauge $$\nabla\cdot\mathbf{A}+\frac{1}{c^2}\frac{\partial\phi}{\partial t}=0\tag{7}$$ and the vector identity $$\nabla\times(\nabla\times\mathbf{A})=\nabla(\nabla\cdot\mathbf{A})-\nabla^2\mathbf{A}\tag{8}$$ we obtain wave equations for $\phi$ and $\mathbf{A}$: $$ \begin{eqnarray} \nabla^2\phi-\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2}&=&-\frac{\rho}{\epsilon},\tag{9}\\ \nabla^2\mathbf{A}-\frac{1}{c^2}\frac{\partial^2\mathbf{A}}{\partial t^2}&=&-\mu\mathbf{J}.\tag{10} \end{eqnarray} $$ Imagine two linear isotropic dielectrics meet at a smooth interface: region $1$ has permittivity $\epsilon_1$ and region $2$ has permittivity $\epsilon_2$.

By using a pill-box across the interface Gauss's law, equation $(1)$, implies the following condition for the component of the electric field normal to the interface: $$\epsilon_2\,\mathbf{E}_{2n}-\epsilon_1\,\mathbf{E}_{1n}=\rho_A\tag{11}$$ where $\rho_A$ is the surface density of free charges.

Substituting equation $(5)$ into equation $(11)$ gives $$\epsilon_2\left(-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t}\right)_{2n}-\epsilon_1\left(-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t}\right)_{1n}=\rho_A.\tag{12}$$

However the wave equation for the scalar potential $\phi$, equation $(9)$, also has a matching condition across the interface which can be derived using a pill-box. Noting that $\nabla^2\phi=\nabla\cdot\nabla\phi$ one can use the divergence theorem in the limit of zero pill-box height to obtain $$\epsilon_2(-\nabla\phi)_{2n}-\epsilon_1(-\nabla\phi)_{1n}=\rho_A.\tag{13}$$ The contradiction between equations $(12)$ and $(13)$ does not seem to be due to writing equations in terms of $\phi$ and $\mathbf{A}$ since $\mathbf{E}$ and $\mathbf{B}$ are gauge invariant.

Does this show that Maxwell's equations are inconsistent?

Maxwell's equations in linear homogeneous matter: $$ \begin{eqnarray} \nabla\cdot\mathbf{E}&=&\frac{\rho}{\epsilon},\tag{1}\\ \nabla\times\mathbf{E}&=&-\frac{\partial\mathbf{B}}{\partial t},\tag{2}\\ \nabla\cdot\mathbf{B}&=&0,\tag{3}\\ \nabla\times\mathbf{B}&=&\mu\,\mathbf{J}+\frac{1}{c^2}\frac{\partial\mathbf{E}}{\partial t}.\tag{4} \end{eqnarray} $$ Equations $(2)$ and $(3)$ have solutions in terms of the scalar potential $\phi$ and vector potential $\mathbf{A}$: $$ \begin{eqnarray} \mathbf{E}&=&-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t},\tag{5}\\ \mathbf{B}&=&\nabla\times\mathbf{A}.\tag{6} \end{eqnarray} $$ By substituting equations $(5)$ and $(6)$ into equations $(1)$ and $(4)$ using the Lorenz gauge $$\nabla\cdot\mathbf{A}+\frac{1}{c^2}\frac{\partial\phi}{\partial t}=0\tag{7}$$ and the vector identity $$\nabla\times(\nabla\times\mathbf{A})=\nabla(\nabla\cdot\mathbf{A})-\nabla^2\mathbf{A}\tag{8}$$ we obtain wave equations for $\phi$ and $\mathbf{A}$: $$ \begin{eqnarray} \nabla^2\phi-\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2}&=&-\frac{\rho}{\epsilon},\tag{9}\\ \nabla^2\mathbf{A}-\frac{1}{c^2}\frac{\partial^2\mathbf{A}}{\partial t^2}&=&-\mu\mathbf{J}.\tag{10} \end{eqnarray} $$ Imagine two linear homogeneous dielectrics meet at a smooth interface: region $1$ has permittivity $\epsilon_1$ and region $2$ has permittivity $\epsilon_2$.

By using a pill-box across the interface Gauss's law, equation $(1)$, implies the following condition for the component of the electric field normal to the interface: $$\epsilon_2\,\mathbf{E}_{2n}-\epsilon_1\,\mathbf{E}_{1n}=\rho_A\tag{11}$$ where $\rho_A$ is the surface density of free charges.

Substituting equation $(5)$ into equation $(11)$ gives $$\epsilon_2\left(-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t}\right)_{2n}-\epsilon_1\left(-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t}\right)_{1n}=\rho_A.\tag{12}$$

However the wave equation for the scalar potential $\phi$, equation $(9)$, also has a matching condition across the interface which can be derived using a pill-box. Noting that $\nabla^2\phi=\nabla\cdot\nabla\phi$ one can use the divergence theorem in the limit of zero pill-box height to obtain $$\epsilon_2(-\nabla\phi)_{2n}-\epsilon_1(-\nabla\phi)_{1n}=\rho_A.\tag{13}$$ The contradiction between equations $(12)$ and $(13)$ does not seem to be due to writing equations in terms of $\phi$ and $\mathbf{A}$ since $\mathbf{E}$ and $\mathbf{B}$ are gauge invariant.

Does this show that Maxwell's equations are inconsistent?

edited tags; edited tags
Link
Qmechanic
  • 223.9k
  • 52
  • 640
  • 2.6k
Source Link
John Eastmond
  • 1
  • 2
  • 25
  • 50

Are Maxwell's equations inconsistent?

Maxwell's equations in linear matter: $$ \begin{eqnarray} \nabla\cdot\mathbf{E}&=&\frac{\rho}{\epsilon},\tag{1}\\ \nabla\times\mathbf{E}&=&-\frac{\partial\mathbf{B}}{\partial t},\tag{2}\\ \nabla\cdot\mathbf{B}&=&0,\tag{3}\\ \nabla\times\mathbf{B}&=&\mu\,\mathbf{J}+\frac{1}{c^2}\frac{\partial\mathbf{E}}{\partial t}.\tag{4} \end{eqnarray} $$ Equations $(2)$ and $(3)$ have solutions in terms of the scalar potential $\phi$ and vector potential $\mathbf{A}$: $$ \begin{eqnarray} \mathbf{E}&=&-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t},\tag{5}\\ \mathbf{B}&=&\nabla\times\mathbf{A}.\tag{6} \end{eqnarray} $$ By substituting equations $(5)$ and $(6)$ into equations $(1)$ and $(4)$ using the Lorenz gauge $$\nabla\cdot\mathbf{A}+\frac{1}{c^2}\frac{\partial\phi}{\partial t}=0\tag{7}$$ and the vector identity $$\nabla\times(\nabla\times\mathbf{A})=\nabla(\nabla\cdot\mathbf{A})-\nabla^2\mathbf{A}\tag{8}$$ we obtain wave equations for $\phi$ and $\mathbf{A}$: $$ \begin{eqnarray} \nabla^2\phi-\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2}&=&-\frac{\rho}{\epsilon},\tag{9}\\ \nabla^2\mathbf{A}-\frac{1}{c^2}\frac{\partial^2\mathbf{A}}{\partial t^2}&=&-\mu\mathbf{J}.\tag{10} \end{eqnarray} $$ Imagine two linear isotropic dielectrics meet at a smooth interface: region $1$ has permittivity $\epsilon_1$ and region $2$ has permittivity $\epsilon_2$.

By using a pill-box across the interface Gauss's law, equation $(1)$, implies the following condition for the component of the electric field normal to the interface: $$\epsilon_2\,\mathbf{E}_{2n}-\epsilon_1\,\mathbf{E}_{1n}=\rho_A\tag{11}$$ where $\rho_A$ is the surface density of free charges.

Substituting equation $(5)$ into equation $(11)$ gives $$\epsilon_2\left(-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t}\right)_{2n}-\epsilon_1\left(-\nabla\phi-\frac{\partial\mathbf{A}}{\partial t}\right)_{1n}=\rho_A.\tag{12}$$

However the wave equation for the scalar potential $\phi$, equation $(9)$, also has a matching condition across the interface which can be derived using a pill-box. Noting that $\nabla^2\phi=\nabla\cdot\nabla\phi$ one can use the divergence theorem in the limit of zero pill-box height to obtain $$\epsilon_2(-\nabla\phi)_{2n}-\epsilon_1(-\nabla\phi)_{1n}=\rho_A.\tag{13}$$ The contradiction between equations $(12)$ and $(13)$ does not seem to be due to writing equations in terms of $\phi$ and $\mathbf{A}$ since $\mathbf{E}$ and $\mathbf{B}$ are gauge invariant.

Does this show that Maxwell's equations are inconsistent?