Consider Kicked field Ising model Hamiltonian given as follows. (I am following the this paper, relevant calculations are in appendix A.)
$$ H_I=2 J \sum_k\left[\cos k\left(\hat{b}_k^{\dagger} \hat{b}_k-1 / 2\right)+\frac{\imath}{2}\left(\hat{b}_k^{\dagger} \hat{b}_{-k}^{\dagger}-\hat{b}_{-k} \hat{b}_k\right) \sin k\right] $$
and
$$ H_K=-2 b \sum_k\left(\hat{b}_k^{\dagger} \hat{b}_k-1 / 2\right). $$
This is obtained using Jordan-Wigner transformation. $\hat{b}_k$ are the Fermionic operator corresponding to momentum $k$.
Further using the transformation
$$ \hat{\eta}_k=\cos \vartheta_k \hat{b}_k-i \sin \vartheta_k \hat{b}_{-k}^{\dagger}, \quad \vartheta_k=k / 2+\pi / 2 $$
the Hamiltonian can be expressed as
$$ H_{\mathrm{I}}=-2 J \sum_k\left(\hat{\eta}_k^{\dagger} \hat{\eta}_k-1 / 2\right) $$
and
$$ H_{\mathrm{K}}=-2 b \sum_k\left[\cos 2 \vartheta_k\left(\hat{\eta}_k^{\dagger} \hat{\eta}_k-1 / 2\right)+\frac{i}{2} \sin 2 \vartheta_k\left(\hat{\eta}_k^{\dagger} \hat{\eta}_{-k}^{\dagger}-\hat{\eta}_{-k} \hat{\eta}_k\right)\right] . $$
Using that $\hat{b}_k$ and $\hat{\eta}_k$ are fermionic operators we obtain for the Ising and kick part of the Floquet operator
$$ \begin{aligned} U_I= exp(- i H_{I})= & \mathrm{e}^{2 i J \sum_k\left(\hat{\eta}_k^{\dagger} \hat{\eta}_k-1 / 2\right)}=\mathrm{e}^{-i N J} \prod_k\left[1+\left(\mathrm{e}^{2 i J}-1\right) \hat{\eta}_k^{\dagger} \hat{\eta}_k\right] \\ U_K= exp(- i H_{K})= & \mathrm{e}^{2 i b \sum_k\left(\hat{b}_k^{\dagger} \hat{b}_k-1 / 2\right)}=\mathrm{e}^{-i N b} \prod_k\left[1+\left(\mathrm{e}^{2 i b}-1\right) \hat{b}_k^{\dagger} \hat{b}_k\right] \\ = & \mathrm{e}^{-i N b} \prod_k\left[1+\left(\mathrm{e}^{2 i b}-1\right)\left(\cos ^2 \vartheta_k \hat{\eta}_k^{\dagger} \hat{\eta}_k+\sin ^2 \vartheta_k \hat{\eta}_{-k} \hat{\eta}_{-k}^{\dagger}\right.\right. \\ & \left.\left.+\frac{i}{2} \sin 2 \vartheta_k\left(\hat{\eta}_k^{\dagger} \hat{\eta}_{-k}^{\dagger}-\hat{\eta}_{-k} \hat{\eta}_k\right)\right)\right] \end{aligned} $$
All the above steps are clear to me and I was able to obtain all of them. After this the paper states " In the latter expression k is only coupled to itself and to −k, the Floquet operator thus splits into $4 \times 4$ subblocks ($k$ and $-k$ occupied, $k$ and $-k$ unoccupied, only $k$ occupied, only $-k$ occupied) that can be diagonalized analytically". It is this part at which I am stuck.
My approach was to consider the states corresponding to momentum $|k,-k \rangle$ and label them as $|0,0 \rangle ,|1,1 \rangle,|0,1 \rangle,|1,0 \rangle$ corresponding to the four cases mentioned above. Then all I need to know is how the operator $\eta_{k}$ and $\eta_{k}^{\dagger}$ (similarly for $-k$ ) acts on these states. This in principle should have given me the $4\times $ matrix, that I can diagonalize analytically and obtain the eigenvalues. However, it seems that I am missing something as this simple approach did not work. My eigenvalues did not match the eigenvalues of the paper which are given by following set
$$ \Lambda(k)=\left\{\mu_{-}(k), 1,1, \mu_{+}(k)\right\}, $$
where $\mu_{ \pm}(k)=\alpha(k) \pm \sqrt{\beta(k)}$ with
$$ \begin{aligned} & \alpha(k)=\frac{1}{4} \mathrm{e}^{2 \mathrm{i}\left(J+b^x\right)}\left[\left(1+\cos 2 \vartheta_k\right)\left(1+\mathrm{e}^{-4 \mathrm{i}\left(J+b^x\right)}\right)+\left(1-\cos 2 \vartheta_k\right)\left(\mathrm{e}^{-4 \mathrm{i} J}+\mathrm{e}^{-4 \mathrm{i}^x}\right)\right] \\ & \beta(k)=\frac{\mathrm{e}^{4 \mathrm{i}\left(J+b^x\right)}}{16}\left(\left(1+\mathrm{e}^{-4 \mathrm{i} J}\right)\left(1+\mathrm{e}^{-4 \mathrm{i}^x}\right)+\left(1-\mathrm{e}^{-4 \mathrm{i} J}\right)\left(1-\mathrm{e}^{-4 \mathrm{i}^x}\right) \cos 2 \vartheta_k\right)^2-1 . \end{aligned} $$
Can someone help me to identify the problem and rectify it. For comparison, I obtain following $U_{I}$ and $U_{k}$ ( which are obviously wrong as the eigenvalues do not match). The basis I choose is $|0,0 \rangle ,|1,1 \rangle,|0,1 \rangle,|1,0 \rangle$ so that the matrix is block diagonal (because of Parity)
$U_{I}= \left( \begin{array}{cccc} e^{-2 i J} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{-2 i J} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right), \quad \quad \quad U_{K}= \left( \begin{array}{cccc} 1+\left(-1+e^{2 i b}\right) \sin ^2(\nu ) & -\frac{1}{2} i \left(-1+e^{2 i b}\right) \sin (2 \nu ) & 0 & 0 \\ \frac{1}{2} i \left(-1+e^{2 i b}\right) \sin (2 \nu ) & 1+\left(-1+e^{2 i b}\right) \cos ^2(\nu ) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{2 i b} \\ \end{array} \right) $ $b= b^{x}$ and $\nu = \vartheta_k$