I just tried to price the implied dividend for a few active, liquid options markets using current prices and I am not convinced my results are accurate.
I am using American options, and using the put-call parity relationship that exists for European options. I've seen that at-the-money (or near-the-money) options will give a pretty accurate description of implied dividends. If I cannot use put-call parity, what methods are use by practitioners to get an implied dividend?
I used an interpolated treasury yield curve for accurate interest rate values, and priced IDIV with $$IDIV = \text{Stock Price } - \text{Strike } \times e^{-rT} - Call(K,T) - Put(K,T)$$
For AAPL: expiry 2016-11-11 -0.040236 2016-11-18 -0.053026 2016-11-25 -0.061683 2016-12-02 -0.065252 2016-12-09 -0.076144 2016-12-16 -0.029923 2016-12-23 -0.100593 2017-01-20 2.660728 2017-02-17 0.092540 2017-03-17 0.131359 2017-04-21 0.263763 2017-06-16 0.538302 2017-07-21 0.613789 2017-11-17 1.193600 2018-01-19 1.352709 2019-01-18 2.295825 For SPY: expiry 2016-11-09 0.006997 2016-11-11 0.008535 2016-11-16 -0.000494 2016-11-18 0.006222 2016-11-23 -0.004294 2016-11-25 0.002909 2016-11-30 -0.006724 2016-12-02 -0.008246 2016-12-07 -0.016802 2016-12-09 -0.013155 2016-12-16 0.799113 2016-12-23 0.741128 2016-12-30 0.519134 2017-01-20 0.872681 2017-02-17 0.850424 2017-03-17 1.253229 2017-03-31 1.446670 2017-06-16 2.063210 2017-06-30 2.285904 2017-09-15 2.853458 2017-09-29 2.841766 2017-12-15 3.393382 2018-01-19 3.920152 2018-03-16 4.540356 2018-06-15 5.096783 2018-09-21 5.609085 2018-12-21 6.897434 These seem far enough off that it's not due to computational errors. What else do I need to account for when using American options to price the implied dividend.