Our professor calculated the present value of a bond with $T=10$ years, $FV=10,000$€, $C=700$€ p.a. and an expected rate of return $r$. He wrote $$\begin{align}PV&=C\cdot\sum_{n=1}^{10}\frac{1}{(1+r)^n}+\frac{FV}{(1+r)^n}\\&=700\cdot\color{red}{\frac{1-\frac{1}{(1+r)^n}}{(1+r)^n}}+\frac{FV}{(1+r)^n}\end{align}$$ I don't understand the red step (I guess he transformed the sum).
In our lectures we have to different formulas for calculating the present value (with cash flows $C_n$): $$PV=\sum_{n=1}^T\frac{C_n}{(1+r)^n} \tag{1}$$ and annuity (value of $C$ received each year for $T$ years): $$PV = \frac{C}{r}\left(1-\frac{1}{(1+r)^T}\right).\tag{2}$$ I understand that if in $(1)$ $C_n=C\ \forall n=1,...,T:$ $$PV=C\cdot\sum_{n=1}^T\left(\frac{1}{(1+r)}\right)^n $$ Maybe it's connected to the geometric sum? Thanks for every help!