Taking the last two terms of last expression you gave, we can do the following
$$ \begin{align} M \left(\frac{|00\rangle+|11\rangle}{\sqrt{2}}\right) &= X_1\otimes Z_2\left(\frac{|00\rangle+|11\rangle}{\sqrt{2}}\right) \\ &= \left(\frac{X_1|0\rangle \otimes Z_2|0\rangle+X_1|1\rangle \otimes Z_2|1\rangle}{\sqrt{2}}\right) \\ &= \left(\frac{|1\rangle \otimes |0\rangle+|0\rangle \otimes -|1\rangle}{\sqrt{2}}\right) = \left(\frac{|10\rangle-|01\rangle}{\sqrt{2}}\right) \end{align} $$
Now, you can plug this in into the equation for the expectation value
$$ \begin{align} E[M]&=\left(\frac{\langle00|+\langle11|}{\sqrt{2}}\right)\left(\frac{|10\rangle-|01\rangle}{\sqrt{2}}\right) \\ &= \frac{1}{2}\left( \langle00|10\rangle-\langle00|01\rangle+\langle11|10\rangle-\langle11|01\rangle \right) = 0 \end{align} $$
As you can see, you end up with four inner products, all between orthogonal states, which means all of them evaluate to $0$.