In this paper, the authors give four postulates if a function $C$ can be taken as a coherence measure:
(C1) $C(\rho) \geqslant 0$, and $C(\rho)=0$ if and only if $\rho \in \mathcal{I}$, where $\mathcal{I}$ stands for sets of incoherent states.
(C2a) Monotonicity under incoherent operations, $C(\rho) \geqslant$ $C(\Lambda(\rho))$ if $\Lambda$ is an incoherent operation.
(C2b) Monotonicity under selective incoherent operations, $C(\rho) \geqslant \sum_{n} p_{n} C\left(\rho_{n}\right)$, where $p_{n}=\operatorname{Tr}\left(K_{n} \rho K_{n}^{\dagger}\right), \rho_{n}=$ $K_{n} \rho K_{n}^{\dagger} / p_{n}$, and $\Lambda(\rho)=\sum_{n} K_{n} \rho K_{n}^{\dagger}$ is an incoherent operation.
(C3) Nonincreasing under mixing of quantum states, i.e., convexity, $\sum_{n} p_{n} C\left(\rho_{n}\right) \geqslant C\left(\sum_{n} p_{n} \rho_{n}\right)$ for any set of states $\left\{\rho_{n}\right\}$ and any probability distribution $\left\{p_{n}\right\}$.
My question is about (C2b). Since they require $K_n \mathcal{I} K_n^\dagger\subset \mathcal{I},\forall n$, so why should (C2b) be $C\left( \rho \right) \ge \sum_n{p_nC\left( \rho _n \right)}$ instead of $C\left( \rho \right) \ge C\left( \rho _n \right) ,\forall n$?