25

I'm trying to fit the distribution of some experimental values with a custom probability density function. Obviously, the integral of the resulting function should always be equal to 1, but the results of simple scipy.optimize.curve_fit(function, dataBincenters, dataCounts) never satisfy this condition. What is the best way to solve this problem?

5 Answers 5

23

You can define your own residuals function, including a penalization parameter, like detailed in the code below, where it is known beforehand that the integral along the interval must be 2.. If you test without the penalization you will see that what your are getting is the conventional curve_fit:

enter image description here

import matplotlib.pyplot as plt import scipy from scipy.optimize import curve_fit, minimize, leastsq from scipy.integrate import quad from scipy import pi, sin x = scipy.linspace(0, pi, 100) y = scipy.sin(x) + (0. + scipy.rand(len(x))*0.4) def func1(x, a0, a1, a2, a3): return a0 + a1*x + a2*x**2 + a3*x**3 # here you include the penalization factor def residuals(p, x, y): integral = quad(func1, 0, pi, args=(p[0], p[1], p[2], p[3]))[0] penalization = abs(2.-integral)*10000 return y - func1(x, p[0], p[1], p[2], p[3]) - penalization popt1, pcov1 = curve_fit(func1, x, y) popt2, pcov2 = leastsq(func=residuals, x0=(1., 1., 1., 1.), args=(x, y)) y_fit1 = func1(x, *popt1) y_fit2 = func1(x, *popt2) plt.scatter(x, y, marker='.') plt.plot(x, y_fit1, color='g', label='curve_fit') plt.plot(x, y_fit2, color='y', label='constrained') plt.legend() plt.xlim(-0.1, 3.5) plt.ylim(0, 1.4) print('Exact integral:', quad(sin, 0, pi)[0]) print('Approx integral1:', quad(func1, 0, pi, args=(popt1[0], popt1[1], popt1[2], popt1[3]))[0]) print('Approx integral2:', quad(func1, 0, pi, args=(popt2[0], popt2[1], popt2[2], popt2[3]))[0]) plt.show() #Exact integral: 2.0 #Approx integral1: 2.60068579748 #Approx integral2: 2.00001911981 

Other related questions:

Sign up to request clarification or add additional context in comments.

6 Comments

@Axon Which warning? It would be nice if you could paste your code somewhere on the web...
I tried this method, but in this case I get this warning: dpaste.org/NfLwy, and the resulting fitted curve doesn't even nearly resemble the distribution. scipy.optimize.curve_fit with penalization
@Axon This is an integration error. I'am checking here, but you can try another penalization factor 10000 and see what happens. You can also change the initial guess=(1.,1.,1.,1.) to another attempt
@Axon This answer or this answer may give you some insight about how to fit a distribution function
@altroware no special reason, but since curve_fit is a Python wrapper around leastsq I preferred to use the latter... but It would nice to have a new answer with curve_fit ;)
|
12

Here is an almost-identical snippet which makes only use of curve_fit.

import matplotlib.pyplot as plt import numpy as np import scipy.optimize as opt import scipy.integrate as integr x = np.linspace(0, np.pi, 100) y = np.sin(x) + (0. + np.random.rand(len(x))*0.4) def Func(x, a0, a1, a2, a3): return a0 + a1*x + a2*x**2 + a3*x**3 # modified function definition with Penalization def FuncPen(x, a0, a1, a2, a3): integral = integr.quad( Func, 0, np.pi, args=(a0,a1,a2,a3))[0] penalization = abs(2.-integral)*10000 return a0 + a1*x + a2*x**2 + a3*x**3 + penalization popt1, pcov1 = opt.curve_fit( Func, x, y ) popt2, pcov2 = opt.curve_fit( FuncPen, x, y ) y_fit1 = Func(x, *popt1) y_fit2 = Func(x, *popt2) plt.scatter(x,y, marker='.') plt.plot(x,y_fit2, color='y', label='constrained') plt.plot(x,y_fit1, color='g', label='curve_fit') plt.legend(); plt.xlim(-0.1,3.5); plt.ylim(0,1.4) print 'Exact integral:',integr.quad(np.sin ,0,np.pi)[0] print 'Approx integral1:',integr.quad(Func,0,np.pi,args=(popt1[0],popt1[1], popt1[2],popt1[3]))[0] print 'Approx integral2:',integr.quad(Func,0,np.pi,args=(popt2[0],popt2[1], popt2[2],popt2[3]))[0] plt.show() #Exact integral: 2.0 #Approx integral1: 2.66485028754 #Approx integral2: 2.00002116217 

enter image description here

Comments

3

Following the example above here is more general way to add any constraints:

from scipy.optimize import minimize from scipy.integrate import quad import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, np.pi, 100) y = np.sin(x) + (0. + np.random.rand(len(x))*0.4) def func_to_fit(x, params): return params[0] + params[1] * x + params[2] * x ** 2 + params[3] * x ** 3 def constr_fun(params): intgrl, _ = quad(func_to_fit, 0, np.pi, args=(params,)) return intgrl - 2 def func_to_minimise(params, x, y): y_pred = func_to_fit(x, params) return np.sum((y_pred - y) ** 2) # Do the parameter fitting #without constraints res1 = minimize(func_to_minimise, x0=np.random.rand(4), args=(x, y)) params1 = res1.x # with constraints cons = {'type': 'eq', 'fun': constr_fun} res2 = minimize(func_to_minimise, x0=np.random.rand(4), args=(x, y), constraints=cons) params2 = res2.x y_fit1 = func_to_fit(x, params1) y_fit2 = func_to_fit(x, params2) plt.scatter(x,y, marker='.') plt.plot(x, y_fit2, color='y', label='constrained') plt.plot(x, y_fit1, color='g', label='curve_fit') plt.legend(); plt.xlim(-0.1,3.5); plt.ylim(0,1.4) plt.show() print(f"Constrant violation: {constr_fun(params1)}") 

Constraint violation: -2.9179325622408214e-10

Comments

1

If you are able normalise your probability fitting function in advance then you can use this information to constrain your fit. A very simple example of this would be fitting a Gaussian to data. If one were to fit the following three-parameter (A, mu, sigma) Gaussian then it would be unnormalised in general:

Gaussian

however, if one instead enforces the normalisation condition on A:

Normalised

then the Gaussian is only two parameter and is automatically normalised.

Comments

0

You could ensure that your fitted probability distribution is normalised via a numerical integration. For example, assuming that you have data x and y and that you have defined an unnormalised_function(x, a, b) with parameters a and b for your probability distribution, which is defined on the interval x1 to x2 (which could be infinite):

from scipy.optimize import curve_fit from scipy.integrate import quad # Define a numerically normalised function def normalised_function(x, a, b): normalisation, _ = quad(lambda x: unnormalised_function(x, a, b), x1, x2) return unnormalised_function(x, a, b)/normalisation # Do the parameter fitting fitted_parameters, _ = curve_fit(normalised_function, x, y) 

Comments

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.