Make it easy to opt-in to space savings
I have decided that this is a useful thing to do, but a full specialization is a little more work than necessary (for instance, getting operator= correct).
I have posted on the Boost mailing list a way to simplify the task of specializing, especially when you only want to specialize some instantiations of a class template.
http://boost.2283326.n4.nabble.com/optional-Specializing-optional-to-save-space-td4680362.html
My current interface involves a special tag type used to 'unlock' access to particular functions. I have creatively named this type optional_tag. Only optional can construct an optional_tag. For a type to opt-in to a space-efficient representation, it needs the following member functions:
T(optional_tag) constructs an uninitialized value initialize(optional_tag, Args && ...) constructs an object when there may be one in existence already uninitialize(optional_tag) destroys the contained object is_initialized(optional_tag) checks whether the object is currently in an initialized state
By always requiring the optional_tag parameter, we do not limit any function signatures. This is why, for instance, we cannot use operator bool() as the test, because the type may want that operator for other reasons.
An advantage of this over some other possible methods of implementing it is that you can make it work with any type that can naturally support such a state. It does not add any requirements such as having a move constructor.
You can see a full code implementation of the idea at
https://bitbucket.org/davidstone/bounded_integer/src/8c5e7567f0d8b3a04cc98142060a020b58b2a00f/bounded_integer/detail/optional/optional.hpp?at=default&fileviewer=file-view-default
and for a class using the specialization:
https://bitbucket.org/davidstone/bounded_integer/src/8c5e7567f0d8b3a04cc98142060a020b58b2a00f/bounded_integer/detail/class.hpp?at=default&fileviewer=file-view-default
(lines 220 through 242)
An alternative approach
This is in contrast to my previous implementation, which required users to specialize a class template. You can see the old version here:
https://bitbucket.org/davidstone/bounded_integer/src/2defec41add2079ba023c2c6d118ed8a274423c8/bounded_integer/detail/optional/optional.hpp
and
https://bitbucket.org/davidstone/bounded_integer/src/2defec41add2079ba023c2c6d118ed8a274423c8/bounded_integer/detail/optional/specialization.hpp
The problem with this approach is that it is simply more work for the user. Rather than adding four member functions, the user must go into a new namespace and specialize a template.
In practice, all specializations would have an in_place_t constructor that forwards all arguments to the underlying type. The optional_tag approach, on the other hand, can just use the underlying type's constructors directly.
In the specialize optional_storage approach, the user also has the responsibility of adding proper reference-qualified overloads of a value function. In the optional_tag approach, we already have the value so we do not have to pull it out.
optional_storage also required standardizing as part of the interface of optional two helper classes, only one of which the user is supposed to specialize (and sometimes delegate their specialization to the other).
The difference between this and compact_optional
compact_optional is a way of saying "Treat this special sentinel value as the type being not present, almost like a NaN". It requires the user to know that the type they are working with has some special sentinel. An easily specializable optional is a way of saying "My type does not need extra space to store the not present state, but that state is not a normal value." It does not require anyone to know about the optimization to take advantage of it; everyone who uses the type gets it for free.
The future
My goal is to get this first into boost::optional, and then part of the std::optional proposal. Until then, you can always use bounded::optional, although it has a few other (intentional) interface differences.
std::optional<whatever type they want>, rather than having to remember that my type is special and should be stored in its own optional class for maximum efficiency.uint32_fast_twithin its standard utilities.fast_multiplyfunction if you wanted performance from multiplication that you use forshort, but the regular oldoperator *was there just to trip you up in case you accidentally use it. And when my users are trying to use a "generic integer type" in template code that could be my class or it could be a built-in integer, should they be expected to write athe_optional_I_mean_to_usealias template to pick the correct one, even though there is no reason they would ever want the default version?