326

Is hashing a password twice before storage any more or less secure than just hashing it once?

What I'm talking about is doing this:

$hashed_password = hash(hash($plaintext_password)); 

instead of just this:

$hashed_password = hash($plaintext_password); 

If it is less secure, can you provide a good explanation (or a link to one)?

Also, does the hash function used make a difference? Does it make any difference if you mix md5 and sha1 (for example) instead of repeating the same hash function?

Note 1: When I say "double hashing" I'm talking about hashing a password twice in an attempt to make it more obscured. I'm not talking about the technique for resolving collisions.

Note 2: I know I need to add a random salt to really make it secure. The question is whether hashing twice with the same algorithm helps or hurts the hash.

1
  • 3
    Hash(password) and Hash(Hash(password)) are equally insecure. Both lack the notion of Semantic Security. That is, the output is distinguishable from random. For example, MD5("password") is 5f4dcc3b5aa765d61d8327deb882cf99. I know that's the MD5 hash of password, and it is distinguishable from random. Instead, you should use an HMAC. Its provably secure and its a PRF. Commented Oct 12, 2014 at 0:57

16 Answers 16

294

Hashing a password once is insecure

No, multiple hashes are not less secure; they are an essential part of secure password use.

Iterating the hash increases the time it takes for an attacker to try each password in their list of candidates. You can easily increase the time it takes to attack a password from hours to years.

Simple iteration is not enough

Merely chaining hash output to input isn't sufficient for security. The iteration should take place in the context of an algorithm that preserves the entropy of the password. Luckily, there are several published algorithms that have had enough scrutiny to give confidence in their design.

A good key derivation algorithm like PBKDF2 injects the password into each round of hashing, mitigating concerns about collisions in hash output. PBKDF2 can be used for password authentication as-is. Bcrypt follows the key derivation with an encryption step; that way, if a fast way to reverse the key derivation is discovered, an attacker still has to complete a known-plaintext attack.

How to break a password

Stored passwords need protection from an offline attack. If passwords aren't salted, they can be broken with a pre-computed dictionary attack (for example, using a Rainbow Table). Otherwise, the attacker must spend time to compute a hash for each password and see if it matches the stored hash.

All passwords are not equally likely. Attackers might exhaustively search all short passwords, but they know that their chances for brute-force success drop sharply with each additional character. Instead, they use an ordered list of the most likely passwords. They start with "password123" and progress to less frequently used passwords.

Let's say an attackers list is long, with 10 billion candidates; suppose also that a desktop system can compute 1 million hashes per second. The attacker can test her whole list is less than three hours if only one iteration is used. But if just 2000 iterations are used, that time extends to almost 8 months. To defeat a more sophisticated attacker—one capable of downloading a program that can tap the power of their GPU, for example—you need more iterations.

How much is enough?

The number of iterations to use is a trade-off between security and user experience. Specialized hardware that can be used by attackers is cheap, but it can still perform hundreds of millions of iterations per second. The performance of the attacker's system determines how long it takes to break a password given a number of iterations. But your application is not likely to use this specialized hardware. How many iterations you can perform without aggravating users depends on your system.

You can probably let users wait an extra ¾ second or so during authentication. Profile your target platform, and use as many iterations as you can afford. Platforms I've tested (one user on a mobile device, or many users on a server platform) can comfortably support PBKDF2 with between 60,000 and 120,000 iterations, or bcrypt with cost factor of 12 or 13.

More background

Read PKCS #5 for authoritative information on the role of salt and iterations in hashing. Even though PBKDF2 was meant for generating encryption keys from passwords, it works well as a one-way-hash for password authentication. Each iteration of bcrypt is more expensive than a SHA-2 hash, so you can use fewer iterations, but the idea is the same. Bcrypt also goes a step beyond most PBKDF2-based solutions by using the derived key to encrypt a well-known plain text. The resulting cipher text is stored as the "hash," along with some meta-data. However, nothing stops you from doing the same thing with PBKDF2.

Here are other answers I've written on this topic:

Sign up to request clarification or add additional context in comments.

25 Comments

Intentionally making a slow algorithm is an accepted practice when you're trying to prevent dictionary attacks against compromised authentication stores. The technique is called "key strengthening" or "key stretching". See en.wikipedia.org/wiki/Key_stretching
@RoBorg: it doesn't matter how slow your implementation is, but how slow an attacker's implementation will be: if the hash itself is thousands of times slower, it will take an attacker thousands of times as long to brute-force the password.
Arguably you would want collisions within the 128-bit space 0 through 2^128-1. If the hash algorithm's 2^128 output space is perfect, then theoretically, you just have a substitution cipher with an alphabet of 2^128 glyphs.
@devin -- it's not "my solution", it's a widely accepted practice, built into password-based cryptography standards like PKCS #5, and recommended by experts like Robert Morris. It's extremely scalable, as the fraction of time spent authenticating users is small in a legitimate application. It only becomes difficult to scale when your application is cracking passwords—hence the recommendation. Certainly, the search space of a hash is smaller than that of possible passwords, but even a 128-bit space is too huge to brute-force search. The threat to defend against is an offline dictionary attack.
I was referring not to the inconvenience to the individual user, but rather the stress that would be put upon the server if you had a large user base, because you are relying on the CPU load to slow down the number of requests. It means that if you add more CPU power, you are reducing the restriction on those brute force attackers. -- However, you are completely correct about the scalability, and the widely accepted practice. I was wrong about almost all the things I said in my earlier comments. Sorry :)
|
246

To those who say it's secure, they are correct in general. "Double" hashing (or the logical expansion of that, iterating a hash function) is absolutely secure if done right, for a specific concern.

To those who say it's insecure, they are correct in this case. The code that is posted in the question is insecure. Let's talk about why:

$hashed_password1 = md5( md5( plaintext_password ) ); $hashed_password2 = md5( plaintext_password ); 

There are two fundamental properties of a hash function that we're concerned about:

  1. Pre-Image Resistance - Given a hash $h, it should be difficult to find a message $m such that $h === hash($m)

  2. Second-Pre-Image Resistance - Given a message $m1, it should be difficult to find a different message $m2 such that hash($m1) === hash($m2)

  3. Collision Resistance - It should be difficult to find a pair of messages ($m1, $m2) such that hash($m1) === hash($m2) (note that this is similar to Second-Pre-Image resistance, but different in that here the attacker has control over both messages)...

For the storage of passwords, all we really care about is Pre-Image Resistance. The other two would be moot, because $m1 is the user's password we're trying to keep safe. So if the attacker already has it, the hash has nothing to protect...

DISCLAIMER

Everything that follows is based on the premise that all we care about is Pre-Image Resistance. The other two fundamental properties of hash functions may not (and typically don't) hold up in the same way. So the conclusions in this post are only applicable when using hash functions for the storage of passwords. They are not applicable in general...

Let's Get Started

For the sake of this discussion, let's invent our own hash function:

function ourHash($input) { $result = 0; for ($i = 0; $i < strlen($input); $i++) { $result += ord($input[$i]); } return (string) ($result % 256); } 

Now it should be pretty obvious what this hash function does. It sums together the ASCII values of each character of input, and then takes the modulo of that result with 256.

So let's test it out:

var_dump( ourHash('abc'), // string(2) "38" ourHash('def'), // string(2) "47" ourHash('hij'), // string(2) "59" ourHash('klm') // string(2) "68" ); 

Now, let's see what happens if we run it a few times around a function:

$tests = array( "abc", "def", "hij", "klm", ); foreach ($tests as $test) { $hash = $test; for ($i = 0; $i < 100; $i++) { $hash = ourHash($hash); } echo "Hashing $test => $hash\n"; } 

That outputs:

Hashing abc => 152 Hashing def => 152 Hashing hij => 155 Hashing klm => 155 

Hrm, wow. We've generated collisions!!! Let's try to look at why:

Here's the output of hashing a string of each and every possible hash output:

Hashing 0 => 48 Hashing 1 => 49 Hashing 2 => 50 Hashing 3 => 51 Hashing 4 => 52 Hashing 5 => 53 Hashing 6 => 54 Hashing 7 => 55 Hashing 8 => 56 Hashing 9 => 57 Hashing 10 => 97 Hashing 11 => 98 Hashing 12 => 99 Hashing 13 => 100 Hashing 14 => 101 Hashing 15 => 102 Hashing 16 => 103 Hashing 17 => 104 Hashing 18 => 105 Hashing 19 => 106 Hashing 20 => 98 Hashing 21 => 99 Hashing 22 => 100 Hashing 23 => 101 Hashing 24 => 102 Hashing 25 => 103 Hashing 26 => 104 Hashing 27 => 105 Hashing 28 => 106 Hashing 29 => 107 Hashing 30 => 99 Hashing 31 => 100 Hashing 32 => 101 Hashing 33 => 102 Hashing 34 => 103 Hashing 35 => 104 Hashing 36 => 105 Hashing 37 => 106 Hashing 38 => 107 Hashing 39 => 108 Hashing 40 => 100 Hashing 41 => 101 Hashing 42 => 102 Hashing 43 => 103 Hashing 44 => 104 Hashing 45 => 105 Hashing 46 => 106 Hashing 47 => 107 Hashing 48 => 108 Hashing 49 => 109 Hashing 50 => 101 Hashing 51 => 102 Hashing 52 => 103 Hashing 53 => 104 Hashing 54 => 105 Hashing 55 => 106 Hashing 56 => 107 Hashing 57 => 108 Hashing 58 => 109 Hashing 59 => 110 Hashing 60 => 102 Hashing 61 => 103 Hashing 62 => 104 Hashing 63 => 105 Hashing 64 => 106 Hashing 65 => 107 Hashing 66 => 108 Hashing 67 => 109 Hashing 68 => 110 Hashing 69 => 111 Hashing 70 => 103 Hashing 71 => 104 Hashing 72 => 105 Hashing 73 => 106 Hashing 74 => 107 Hashing 75 => 108 Hashing 76 => 109 Hashing 77 => 110 Hashing 78 => 111 Hashing 79 => 112 Hashing 80 => 104 Hashing 81 => 105 Hashing 82 => 106 Hashing 83 => 107 Hashing 84 => 108 Hashing 85 => 109 Hashing 86 => 110 Hashing 87 => 111 Hashing 88 => 112 Hashing 89 => 113 Hashing 90 => 105 Hashing 91 => 106 Hashing 92 => 107 Hashing 93 => 108 Hashing 94 => 109 Hashing 95 => 110 Hashing 96 => 111 Hashing 97 => 112 Hashing 98 => 113 Hashing 99 => 114 Hashing 100 => 145 Hashing 101 => 146 Hashing 102 => 147 Hashing 103 => 148 Hashing 104 => 149 Hashing 105 => 150 Hashing 106 => 151 Hashing 107 => 152 Hashing 108 => 153 Hashing 109 => 154 Hashing 110 => 146 Hashing 111 => 147 Hashing 112 => 148 Hashing 113 => 149 Hashing 114 => 150 Hashing 115 => 151 Hashing 116 => 152 Hashing 117 => 153 Hashing 118 => 154 Hashing 119 => 155 Hashing 120 => 147 Hashing 121 => 148 Hashing 122 => 149 Hashing 123 => 150 Hashing 124 => 151 Hashing 125 => 152 Hashing 126 => 153 Hashing 127 => 154 Hashing 128 => 155 Hashing 129 => 156 Hashing 130 => 148 Hashing 131 => 149 Hashing 132 => 150 Hashing 133 => 151 Hashing 134 => 152 Hashing 135 => 153 Hashing 136 => 154 Hashing 137 => 155 Hashing 138 => 156 Hashing 139 => 157 Hashing 140 => 149 Hashing 141 => 150 Hashing 142 => 151 Hashing 143 => 152 Hashing 144 => 153 Hashing 145 => 154 Hashing 146 => 155 Hashing 147 => 156 Hashing 148 => 157 Hashing 149 => 158 Hashing 150 => 150 Hashing 151 => 151 Hashing 152 => 152 Hashing 153 => 153 Hashing 154 => 154 Hashing 155 => 155 Hashing 156 => 156 Hashing 157 => 157 Hashing 158 => 158 Hashing 159 => 159 Hashing 160 => 151 Hashing 161 => 152 Hashing 162 => 153 Hashing 163 => 154 Hashing 164 => 155 Hashing 165 => 156 Hashing 166 => 157 Hashing 167 => 158 Hashing 168 => 159 Hashing 169 => 160 Hashing 170 => 152 Hashing 171 => 153 Hashing 172 => 154 Hashing 173 => 155 Hashing 174 => 156 Hashing 175 => 157 Hashing 176 => 158 Hashing 177 => 159 Hashing 178 => 160 Hashing 179 => 161 Hashing 180 => 153 Hashing 181 => 154 Hashing 182 => 155 Hashing 183 => 156 Hashing 184 => 157 Hashing 185 => 158 Hashing 186 => 159 Hashing 187 => 160 Hashing 188 => 161 Hashing 189 => 162 Hashing 190 => 154 Hashing 191 => 155 Hashing 192 => 156 Hashing 193 => 157 Hashing 194 => 158 Hashing 195 => 159 Hashing 196 => 160 Hashing 197 => 161 Hashing 198 => 162 Hashing 199 => 163 Hashing 200 => 146 Hashing 201 => 147 Hashing 202 => 148 Hashing 203 => 149 Hashing 204 => 150 Hashing 205 => 151 Hashing 206 => 152 Hashing 207 => 153 Hashing 208 => 154 Hashing 209 => 155 Hashing 210 => 147 Hashing 211 => 148 Hashing 212 => 149 Hashing 213 => 150 Hashing 214 => 151 Hashing 215 => 152 Hashing 216 => 153 Hashing 217 => 154 Hashing 218 => 155 Hashing 219 => 156 Hashing 220 => 148 Hashing 221 => 149 Hashing 222 => 150 Hashing 223 => 151 Hashing 224 => 152 Hashing 225 => 153 Hashing 226 => 154 Hashing 227 => 155 Hashing 228 => 156 Hashing 229 => 157 Hashing 230 => 149 Hashing 231 => 150 Hashing 232 => 151 Hashing 233 => 152 Hashing 234 => 153 Hashing 235 => 154 Hashing 236 => 155 Hashing 237 => 156 Hashing 238 => 157 Hashing 239 => 158 Hashing 240 => 150 Hashing 241 => 151 Hashing 242 => 152 Hashing 243 => 153 Hashing 244 => 154 Hashing 245 => 155 Hashing 246 => 156 Hashing 247 => 157 Hashing 248 => 158 Hashing 249 => 159 Hashing 250 => 151 Hashing 251 => 152 Hashing 252 => 153 Hashing 253 => 154 Hashing 254 => 155 Hashing 255 => 156 

Notice the tendency towards higher numbers. That turns out to be our deadfall. Running the hash 4 times ($hash = ourHash($hash)`, for each element) winds up giving us:

Hashing 0 => 153 Hashing 1 => 154 Hashing 2 => 155 Hashing 3 => 156 Hashing 4 => 157 Hashing 5 => 158 Hashing 6 => 150 Hashing 7 => 151 Hashing 8 => 152 Hashing 9 => 153 Hashing 10 => 157 Hashing 11 => 158 Hashing 12 => 150 Hashing 13 => 154 Hashing 14 => 155 Hashing 15 => 156 Hashing 16 => 157 Hashing 17 => 158 Hashing 18 => 150 Hashing 19 => 151 Hashing 20 => 158 Hashing 21 => 150 Hashing 22 => 154 Hashing 23 => 155 Hashing 24 => 156 Hashing 25 => 157 Hashing 26 => 158 Hashing 27 => 150 Hashing 28 => 151 Hashing 29 => 152 Hashing 30 => 150 Hashing 31 => 154 Hashing 32 => 155 Hashing 33 => 156 Hashing 34 => 157 Hashing 35 => 158 Hashing 36 => 150 Hashing 37 => 151 Hashing 38 => 152 Hashing 39 => 153 Hashing 40 => 154 Hashing 41 => 155 Hashing 42 => 156 Hashing 43 => 157 Hashing 44 => 158 Hashing 45 => 150 Hashing 46 => 151 Hashing 47 => 152 Hashing 48 => 153 Hashing 49 => 154 Hashing 50 => 155 Hashing 51 => 156 Hashing 52 => 157 Hashing 53 => 158 Hashing 54 => 150 Hashing 55 => 151 Hashing 56 => 152 Hashing 57 => 153 Hashing 58 => 154 Hashing 59 => 155 Hashing 60 => 156 Hashing 61 => 157 Hashing 62 => 158 Hashing 63 => 150 Hashing 64 => 151 Hashing 65 => 152 Hashing 66 => 153 Hashing 67 => 154 Hashing 68 => 155 Hashing 69 => 156 Hashing 70 => 157 Hashing 71 => 158 Hashing 72 => 150 Hashing 73 => 151 Hashing 74 => 152 Hashing 75 => 153 Hashing 76 => 154 Hashing 77 => 155 Hashing 78 => 156 Hashing 79 => 157 Hashing 80 => 158 Hashing 81 => 150 Hashing 82 => 151 Hashing 83 => 152 Hashing 84 => 153 Hashing 85 => 154 Hashing 86 => 155 Hashing 87 => 156 Hashing 88 => 157 Hashing 89 => 158 Hashing 90 => 150 Hashing 91 => 151 Hashing 92 => 152 Hashing 93 => 153 Hashing 94 => 154 Hashing 95 => 155 Hashing 96 => 156 Hashing 97 => 157 Hashing 98 => 158 Hashing 99 => 150 Hashing 100 => 154 Hashing 101 => 155 Hashing 102 => 156 Hashing 103 => 157 Hashing 104 => 158 Hashing 105 => 150 Hashing 106 => 151 Hashing 107 => 152 Hashing 108 => 153 Hashing 109 => 154 Hashing 110 => 155 Hashing 111 => 156 Hashing 112 => 157 Hashing 113 => 158 Hashing 114 => 150 Hashing 115 => 151 Hashing 116 => 152 Hashing 117 => 153 Hashing 118 => 154 Hashing 119 => 155 Hashing 120 => 156 Hashing 121 => 157 Hashing 122 => 158 Hashing 123 => 150 Hashing 124 => 151 Hashing 125 => 152 Hashing 126 => 153 Hashing 127 => 154 Hashing 128 => 155 Hashing 129 => 156 Hashing 130 => 157 Hashing 131 => 158 Hashing 132 => 150 Hashing 133 => 151 Hashing 134 => 152 Hashing 135 => 153 Hashing 136 => 154 Hashing 137 => 155 Hashing 138 => 156 Hashing 139 => 157 Hashing 140 => 158 Hashing 141 => 150 Hashing 142 => 151 Hashing 143 => 152 Hashing 144 => 153 Hashing 145 => 154 Hashing 146 => 155 Hashing 147 => 156 Hashing 148 => 157 Hashing 149 => 158 Hashing 150 => 150 Hashing 151 => 151 Hashing 152 => 152 Hashing 153 => 153 Hashing 154 => 154 Hashing 155 => 155 Hashing 156 => 156 Hashing 157 => 157 Hashing 158 => 158 Hashing 159 => 159 Hashing 160 => 151 Hashing 161 => 152 Hashing 162 => 153 Hashing 163 => 154 Hashing 164 => 155 Hashing 165 => 156 Hashing 166 => 157 Hashing 167 => 158 Hashing 168 => 159 Hashing 169 => 151 Hashing 170 => 152 Hashing 171 => 153 Hashing 172 => 154 Hashing 173 => 155 Hashing 174 => 156 Hashing 175 => 157 Hashing 176 => 158 Hashing 177 => 159 Hashing 178 => 151 Hashing 179 => 152 Hashing 180 => 153 Hashing 181 => 154 Hashing 182 => 155 Hashing 183 => 156 Hashing 184 => 157 Hashing 185 => 158 Hashing 186 => 159 Hashing 187 => 151 Hashing 188 => 152 Hashing 189 => 153 Hashing 190 => 154 Hashing 191 => 155 Hashing 192 => 156 Hashing 193 => 157 Hashing 194 => 158 Hashing 195 => 159 Hashing 196 => 151 Hashing 197 => 152 Hashing 198 => 153 Hashing 199 => 154 Hashing 200 => 155 Hashing 201 => 156 Hashing 202 => 157 Hashing 203 => 158 Hashing 204 => 150 Hashing 205 => 151 Hashing 206 => 152 Hashing 207 => 153 Hashing 208 => 154 Hashing 209 => 155 Hashing 210 => 156 Hashing 211 => 157 Hashing 212 => 158 Hashing 213 => 150 Hashing 214 => 151 Hashing 215 => 152 Hashing 216 => 153 Hashing 217 => 154 Hashing 218 => 155 Hashing 219 => 156 Hashing 220 => 157 Hashing 221 => 158 Hashing 222 => 150 Hashing 223 => 151 Hashing 224 => 152 Hashing 225 => 153 Hashing 226 => 154 Hashing 227 => 155 Hashing 228 => 156 Hashing 229 => 157 Hashing 230 => 158 Hashing 231 => 150 Hashing 232 => 151 Hashing 233 => 152 Hashing 234 => 153 Hashing 235 => 154 Hashing 236 => 155 Hashing 237 => 156 Hashing 238 => 157 Hashing 239 => 158 Hashing 240 => 150 Hashing 241 => 151 Hashing 242 => 152 Hashing 243 => 153 Hashing 244 => 154 Hashing 245 => 155 Hashing 246 => 156 Hashing 247 => 157 Hashing 248 => 158 Hashing 249 => 159 Hashing 250 => 151 Hashing 251 => 152 Hashing 252 => 153 Hashing 253 => 154 Hashing 254 => 155 Hashing 255 => 156 

We've narrowed ourselves down to 8 values... That's bad... Our original function mapped S(∞) onto S(256). That is we've created a Surjective Function mapping $input to $output.

Since we have a Surjective function, we have no guarantee the mapping for any subset of the input won't have collisions (in fact, in practice they will).

That's what happened here! Our function was bad, but that's not why this worked (that's why it worked so quickly and so completely).

The same thing happens with MD5. It maps S(∞) onto S(2^128). Since there's no guarantee that running MD5(S(output)) will be Injective, meaning that it won't have collisions.

TL/DR Section

Therefore, since feeding the output back to md5 directly can generate collisions, every iteration will increase the chance of collisions. This is a linear increase however, which means that while the result set of 2^128 is reduced, it's not significantly reduced fast enough to be a critical flaw.

So,

$output = md5($input); // 2^128 possibilities $output = md5($output); // < 2^128 possibilities $output = md5($output); // < 2^128 possibilities $output = md5($output); // < 2^128 possibilities $output = md5($output); // < 2^128 possibilities 

The more times you iterate, the further the reduction goes.

The Fix

Fortunately for us, there's a trivial way to fix this: Feed back something into the further iterations:

$output = md5($input); // 2^128 possibilities $output = md5($input . $output); // 2^128 possibilities $output = md5($input . $output); // 2^128 possibilities $output = md5($input . $output); // 2^128 possibilities $output = md5($input . $output); // 2^128 possibilities 

Note that the further iterations aren't 2^128 for each individual value for $input. Meaning that we may be able to generate $input values that still collide down the line (and hence will settle or resonate at far less than 2^128 possible outputs). But the general case for $input is still as strong as it was for a single round.

Wait, was it? Let's test this out with our ourHash() function. Switching to $hash = ourHash($input . $hash);, for 100 iterations:

Hashing 0 => 201 Hashing 1 => 212 Hashing 2 => 199 Hashing 3 => 201 Hashing 4 => 203 Hashing 5 => 205 Hashing 6 => 207 Hashing 7 => 209 Hashing 8 => 211 Hashing 9 => 204 Hashing 10 => 251 Hashing 11 => 147 Hashing 12 => 251 Hashing 13 => 148 Hashing 14 => 253 Hashing 15 => 0 Hashing 16 => 1 Hashing 17 => 2 Hashing 18 => 161 Hashing 19 => 163 Hashing 20 => 147 Hashing 21 => 251 Hashing 22 => 148 Hashing 23 => 253 Hashing 24 => 0 Hashing 25 => 1 Hashing 26 => 2 Hashing 27 => 161 Hashing 28 => 163 Hashing 29 => 8 Hashing 30 => 251 Hashing 31 => 148 Hashing 32 => 253 Hashing 33 => 0 Hashing 34 => 1 Hashing 35 => 2 Hashing 36 => 161 Hashing 37 => 163 Hashing 38 => 8 Hashing 39 => 4 Hashing 40 => 148 Hashing 41 => 253 Hashing 42 => 0 Hashing 43 => 1 Hashing 44 => 2 Hashing 45 => 161 Hashing 46 => 163 Hashing 47 => 8 Hashing 48 => 4 Hashing 49 => 9 Hashing 50 => 253 Hashing 51 => 0 Hashing 52 => 1 Hashing 53 => 2 Hashing 54 => 161 Hashing 55 => 163 Hashing 56 => 8 Hashing 57 => 4 Hashing 58 => 9 Hashing 59 => 11 Hashing 60 => 0 Hashing 61 => 1 Hashing 62 => 2 Hashing 63 => 161 Hashing 64 => 163 Hashing 65 => 8 Hashing 66 => 4 Hashing 67 => 9 Hashing 68 => 11 Hashing 69 => 4 Hashing 70 => 1 Hashing 71 => 2 Hashing 72 => 161 Hashing 73 => 163 Hashing 74 => 8 Hashing 75 => 4 Hashing 76 => 9 Hashing 77 => 11 Hashing 78 => 4 Hashing 79 => 3 Hashing 80 => 2 Hashing 81 => 161 Hashing 82 => 163 Hashing 83 => 8 Hashing 84 => 4 Hashing 85 => 9 Hashing 86 => 11 Hashing 87 => 4 Hashing 88 => 3 Hashing 89 => 17 Hashing 90 => 161 Hashing 91 => 163 Hashing 92 => 8 Hashing 93 => 4 Hashing 94 => 9 Hashing 95 => 11 Hashing 96 => 4 Hashing 97 => 3 Hashing 98 => 17 Hashing 99 => 13 Hashing 100 => 246 Hashing 101 => 248 Hashing 102 => 49 Hashing 103 => 44 Hashing 104 => 255 Hashing 105 => 198 Hashing 106 => 43 Hashing 107 => 51 Hashing 108 => 202 Hashing 109 => 2 Hashing 110 => 248 Hashing 111 => 49 Hashing 112 => 44 Hashing 113 => 255 Hashing 114 => 198 Hashing 115 => 43 Hashing 116 => 51 Hashing 117 => 202 Hashing 118 => 2 Hashing 119 => 51 Hashing 120 => 49 Hashing 121 => 44 Hashing 122 => 255 Hashing 123 => 198 Hashing 124 => 43 Hashing 125 => 51 Hashing 126 => 202 Hashing 127 => 2 Hashing 128 => 51 Hashing 129 => 53 Hashing 130 => 44 Hashing 131 => 255 Hashing 132 => 198 Hashing 133 => 43 Hashing 134 => 51 Hashing 135 => 202 Hashing 136 => 2 Hashing 137 => 51 Hashing 138 => 53 Hashing 139 => 55 Hashing 140 => 255 Hashing 141 => 198 Hashing 142 => 43 Hashing 143 => 51 Hashing 144 => 202 Hashing 145 => 2 Hashing 146 => 51 Hashing 147 => 53 Hashing 148 => 55 Hashing 149 => 58 Hashing 150 => 198 Hashing 151 => 43 Hashing 152 => 51 Hashing 153 => 202 Hashing 154 => 2 Hashing 155 => 51 Hashing 156 => 53 Hashing 157 => 55 Hashing 158 => 58 Hashing 159 => 0 Hashing 160 => 43 Hashing 161 => 51 Hashing 162 => 202 Hashing 163 => 2 Hashing 164 => 51 Hashing 165 => 53 Hashing 166 => 55 Hashing 167 => 58 Hashing 168 => 0 Hashing 169 => 209 Hashing 170 => 51 Hashing 171 => 202 Hashing 172 => 2 Hashing 173 => 51 Hashing 174 => 53 Hashing 175 => 55 Hashing 176 => 58 Hashing 177 => 0 Hashing 178 => 209 Hashing 179 => 216 Hashing 180 => 202 Hashing 181 => 2 Hashing 182 => 51 Hashing 183 => 53 Hashing 184 => 55 Hashing 185 => 58 Hashing 186 => 0 Hashing 187 => 209 Hashing 188 => 216 Hashing 189 => 219 Hashing 190 => 2 Hashing 191 => 51 Hashing 192 => 53 Hashing 193 => 55 Hashing 194 => 58 Hashing 195 => 0 Hashing 196 => 209 Hashing 197 => 216 Hashing 198 => 219 Hashing 199 => 220 Hashing 200 => 248 Hashing 201 => 49 Hashing 202 => 44 Hashing 203 => 255 Hashing 204 => 198 Hashing 205 => 43 Hashing 206 => 51 Hashing 207 => 202 Hashing 208 => 2 Hashing 209 => 51 Hashing 210 => 49 Hashing 211 => 44 Hashing 212 => 255 Hashing 213 => 198 Hashing 214 => 43 Hashing 215 => 51 Hashing 216 => 202 Hashing 217 => 2 Hashing 218 => 51 Hashing 219 => 53 Hashing 220 => 44 Hashing 221 => 255 Hashing 222 => 198 Hashing 223 => 43 Hashing 224 => 51 Hashing 225 => 202 Hashing 226 => 2 Hashing 227 => 51 Hashing 228 => 53 Hashing 229 => 55 Hashing 230 => 255 Hashing 231 => 198 Hashing 232 => 43 Hashing 233 => 51 Hashing 234 => 202 Hashing 235 => 2 Hashing 236 => 51 Hashing 237 => 53 Hashing 238 => 55 Hashing 239 => 58 Hashing 240 => 198 Hashing 241 => 43 Hashing 242 => 51 Hashing 243 => 202 Hashing 244 => 2 Hashing 245 => 51 Hashing 246 => 53 Hashing 247 => 55 Hashing 248 => 58 Hashing 249 => 0 Hashing 250 => 43 Hashing 251 => 51 Hashing 252 => 202 Hashing 253 => 2 Hashing 254 => 51 Hashing 255 => 53 

There's still a rough pattern there, but note that it's no more of a pattern than our underlying function (which was already quite weak).

Notice however that 0 and 3 became collisions, even though they weren't in the single run. That's an application of what I said before (that the collision resistance stays the same for the set of all inputs, but specific collision routes may open up due to flaws in the underlying algorithm).

TL/DR Section

By feeding back the input into each iteration, we effectively break any collisions that may have occurred in the prior iteration.

Therefore, md5($input . md5($input)); should be (theoretically at least) as strong as md5($input).

Is This Important?

Yes. This is one of the reasons that PBKDF2 replaced PBKDF1 in RFC 2898. Consider the inner loops of the two::

PBKDF1:

T_1 = Hash (P || S) , T_2 = Hash (T_1) , ... T_c = Hash (T_{c-1}) 

Where c is the iteration count, P is the Password and S is the salt

PBKDF2:

U_1 = PRF (P, S || INT (i)) , U_2 = PRF (P, U_1) , ... U_c = PRF (P, U_{c-1}) 

Where PRF is really just a HMAC. But for our purposes here, let's just say that PRF(P, S) = Hash(P || S) (that is, the PRF of 2 inputs is the same, roughly speaking, as hash with the two concatenated together). It's very much not, but for our purposes it is.

So PBKDF2 maintains the collision resistance of the underlying Hash function, where PBKDF1 does not.

Tie-ing All Of It Together:

We know of secure ways of iterating a hash. In fact:

$hash = $input; $i = 10000; do { $hash = hash($input . $hash); } while ($i-- > 0); 

Is typically safe.

Now, to go into why we would want to hash it, let's analyze the entropy movement.

A hash takes in the infinite set: S(∞) and produces a smaller, consistently sized set S(n). The next iteration (assuming the input is passed back in) maps S(∞) onto S(n) again:

S(∞) -> S(n) S(∞) -> S(n) S(∞) -> S(n) S(∞) -> S(n) S(∞) -> S(n) S(∞) -> S(n) 

Notice that the final output has exactly the same amount of entropy as the first one. Iterating will not "make it more obscured". The entropy is identical. There's no magic source of unpredictability (it's a Pseudo-Random-Function, not a Random Function).

There is however a gain to iterating. It makes the hashing process artificially slower. And that's why iterating can be a good idea. In fact, it's the basic principle of most modern password hashing algorithms (the fact that doing something over-and-over makes it slower).

Slow is good, because it's combating the primary security threat: brute forcing. The slower we make our hashing algorithm, the harder attackers have to work to attack password hashes stolen from us. And that's a good thing!!!

14 Comments

$output = md5($output); // < 2^128 possibilities --- is it really strict <, or <=?
@zerkms: It's not strictly anything. We'd need to know some very specific details of the underlying function (md5() in this case) to really know for sure. But in general it will be < and not <=... Remember, we're talking about the size of the set of $output for all possible $inputs. So if we have even one collision it will be <, therefore < is the better generalizer.
@TomášFejfar I think the question is not about collisions in general, but collisions in the strict output set (2^128 outputs, each exactly 128 bits wide). That could be Injective, but as far as I know a generic proof is not possible (only a proof-by-example of a collision for a specific algorithm). Consider the hash function that simply returns the input if it is 128 bits (and hashes otherwise). In general it would be surjective, but when fed its output it would always be injective... That's the point of contention...
For those who would like to save time by not having to go check how that discussion between Dan & ircmaxell finished, it finished well: Dan agreeing with ircmaxell.
|
54

Yes, re-hashing reduces the search space, but no, it doesn't matter - the effective reduction is insignificant.

Re-hashing increases the time it takes to brute-force, but doing so only twice is also suboptimal.

What you really want is to hash the password with PBKDF2 - a proven method of using a secure hash with salt and iterations. Check out this SO response.

EDIT: I almost forgot - DON'T USE MD5!!!! Use a modern cryptographic hash such as the SHA-2 family (SHA-256, SHA-384, and SHA-512).

3 Comments

@DFTR - agreed. bcrypt or scrypt are better options.
Don't use those either (SHA-2 family) they can now also be cracked easily, check crackstation.net for proof. If anything use scrypt or PBKDF2 which are key derivation function (KDFs) based cryptographic hash functions.
In 2016, Argon2 and scrypt are the ones everyone should strive to use
10

Yes - it reduces the number of possibly strings that match the string.

As you have already mentioned, salted hashes are much better.

An article here: http://websecurity.ro/blog/2007/11/02/md5md5-vs-md5/, attempts a proof at why it is equivalent, but I'm not sure with the logic. Partly they assume that there isn't software available to analyse md5(md5(text)), but obviously it's fairly trivial to produce the rainbow tables.

I'm still sticking with my answer that there are smaller number of md5(md5(text)) type hashes than md5(text) hashes, increasing the chance of collision (even if still to an unlikely probability) and reducing the search space.

Comments

5

Most answers are by people without a background in cryptography or security. And they are wrong. Use a salt, if possible unique per record. MD5/SHA/etc are too fast, the opposite of what you want. PBKDF2 and bcrypt are slower (wich is good) but can be defeated with ASICs/FPGA/GPUs (very afordable nowadays). So a memory-hard algorithm is needed: enter scrypt.

Here's a layman explanation on salts and speed (but not about memory-hard algorithms).

Comments

4

In general, it provides no additional security to double hash or double encrypt something. If you can break the hash once, you can break it again. It usually doesn't hurt security to do this, though.

In your example of using MD5, as you probably know there are some collision issues. "Double Hashing" doesn't really help protect against this, since the same collisions will still result in the same first hash, which you can then MD5 again to get the second hash.

This does protect against dictionary attacks, like those "reverse MD5-databases", but so does salting.

On a tangent, Double encrypting something doesn't provide any additional security because all it does is result in a different key which is a combination of the two keys actually used. So the effort to find the "key" is not doubled because two keys do not actually need to be found. This isn't true for hashing, because the result of the hash is not usually the same length as the original input.

1 Comment

All correct, but I just want to note that the effect of the strong collision resistance compromise on MD5 is blown a bit out of proportion -- most scenarios that use crypto hash functions do not rely on strong collision resistance, just weak resistance. They are not affected by this vulnerability.
3

I just look at this from a practical standpoint. What is the hacker after? Why, the combination of characters that, when put through the hash function, generates the desired hash.

You are only saving the last hash, therefore, the hacker only has to bruteforce one hash. Assuming you have roughly the same odds of stumbling across the desired hash with each bruteforce step, the number of hashes is irrelevant. You could do a million hash iterations, and it would not increase or reduce security one bit, since at the end of the line there's still only one hash to break, and the odds of breaking it are the same as any hash.

Maybe the previous posters think that the input is relevant; it's not. As long as whatever you put into the hash function generates the desired hash, it will get you through, correct input or incorrect input.

Now, rainbow tables are another story. Since a rainbow table only carries raw passwords, hashing twice may be a good security measure, since a rainbow table that contains every hash of every hash would be too large.

Of course, I'm only considering the example the OP gave, where it's just a plain-text password being hashed. If you include the username or a salt in the hash, it's a different story; hashing twice is entirely unnecessary, since the rainbow table would already be too large to be practical and contain the right hash.

Anyway, not a security expert here, but that's just what I've figured from my experience.

1 Comment

This answer is wrong in every respect. 1. Knowing the next-to-last hash provides no value to an attacker, because the input to an iterated hash is the password, which is then hashed many times (not once). 2. The input space is passwords, the output space is hashed passwords. The space of typical passwords is much smaller than the output space. 3. Rainbow tables for unsalted double-hashed passwords are no bigger than rainbow tables for unsalted single-hashed passwords. 4. Usernames are low-entropy, a good salt is random. 5. Salting does not replace iteration. You need both.
2

From what I've read, it may actually be recommended to re-hash the password hundreds or thousands of times.

The idea is that if you can make it take more time to encode the password, it's more work for an attacker to run through many guesses to crack the password. That seems to be the advantage to re-hashing -- not that it's more cryptographically secure, but it simply takes longer to generate a dictionary attack.

Of course computers get faster all the time, so this advantage diminishes over time (or requires you to increase the iterations).

1 Comment

I mentioned this in another comment too, but en.wikipedia.org/wiki/Key_stretching
2

Double hashing makes sense to me only if I hash the password on the client, and then save the hash (with different salt) of that hash on the server.

That way even if someone hacked his way into the server (thereby ignoring the safety SSL provides), he still can't get to the clear passwords.

Yes he will have the data required to breach into the system, but he wouldn't be able to use that data to compromise outside accounts the user has. And people are known to use the same password for virtually anything.

The only way he could get to the clear passwords is installing a keygen on the client - and that's not your problem anymore.

So in short:

  1. The first hashing on the client protects your users in a 'server breach' scenario.
  2. The second hashing on the server serves to protect your system if someone got a hold of your database backup, so he can't use those passwords to connect to your services.

2 Comments

+1 I was waiting to see an answer like this one, because I thought of the same scenario where you don't want to store plain-text password on the client, but also not send the final encrypted password over the wire to do a simple comparison to the DB.
Doesn't help for web apps. if your server is compromised, the code your server is sending to the client is also compromised. The attacker will disable your client-side hash and capture raw passwords.
1

Personally I wouldn't bother with multiple hashses, but I'd make sure to also hash the UserName (or another User ID field) as well as the password so two users with the same password won't end up with the same hash. Also I'd probably throw some other constant string into the input string too for good measure.

$hashed_password = md5( "xxx" + "|" + user_name + "|" + plaintext_password); 

11 Comments

Actually, it should be a string randomly generated for each user, not a constant.
A constant secret works (and is easier to work with), if you throw in the username as suggested. That essentially produces a random user-specific key.
A constant secret salt is security through obscurity. If the "secret" gets out that you're using "xxx" + username + password, then an attacker doesn't even need data from your tables to launch an attack against it.
I don't think that it's security through obscurity. The reason for using a salt is that you can't compute a rainbow table against multiple md5 hashes simultaneously. Building one for "xxx"+password (same salt) happens once. Building a table for "xxx"+username+password is worse than brute forcing.
@Bill the Lizard: "the attack is reduced to building one dictionary to attack a specific username" is just a brute-force attack (actually even worse, because in addition to computing all hashes you have to store them), so the salt works perfectly in this case.
|
1

Let us assume you use the hashing algorithm: compute rot13, take the first 10 characters. If you do that twice (or even 2000 times) it is possible to make a function that is faster, but which gives the same result (namely just take the first 10 chars).

Likewise it may be possible to make a faster function that gives the same output as a repeated hashing function. So your choice of hashing function is very important: as with the rot13 example it is not given that repeated hashing will improve security. If there is no research saying that the algorithm is designed for recursive use, then it is safer to assume that it will not give you added protection.

That said: For all but the simplest hashing functions it will most likely take cryptography experts to compute the faster functions, so if you are guarding against attackers that do not have access to cryptography experts it is probably safer in practice to use a repeated hashing function.

Comments

0

The concern about reducing the search space is mathematically correct, although the search space remains large enough that for all practical purposes (assuming you use salts), at 2^128. However, since we are talking about passwords, the number of possible 16-character strings (alphanumeric, caps matter, a few symbols thrown in) is roughly 2^98, according to my back-of-the-envelope calculations. So the perceived decrease in the search space is not really relevant.

Aside from that, there really is no difference, cryptographically speaking.

Although there is a crypto primitive called a "hash chain" -- a technique that allows you to do some cool tricks, like disclosing a signature key after it's been used, without sacrificing the integrity of the system -- given minimal time synchronization, this allows you to cleanly sidestep the problem of initial key distribution. Basically, you precompute a large set of hashes of hashes - h(h(h(h....(h(k))...))) , use the nth value to sign, after a set interval, you send out the key, and sign it using key (n-1). The recepients can now verify that you sent all the previous messages, and no one can fake your signature since the time period for which it is valid has passed.

Re-hashing hundreds of thousands of times like Bill suggests is just a waste of your cpu.. use a longer key if you are concerned about people breaking 128 bits.

1 Comment

Re-hashing is precisely about slowing down the hash. This is a key security feature in password-based cryptography. See the links for PCKS5 and PBKDF2.
0

As several responses in this article suggest, there are some cases where it may improves security and others where it definately hurts it. There is a better solution that will definately improve security. Instead of doubling the number of times you calculate the hash, double the size of your salt, or double the number of bits used int the hash, or do both! Instead of SHA-245, jump up to SHA-512.

2 Comments

This doesn't answer the question.
Double hashing is not worth the effort, but doubling your hash size is. I think this is a more valuable point.
-1

Double hashing is ugly because it's more than likely an attacker has built a table to come up with most hashes. Better is to salt your hashes, and mix hashes together. There are also new schemas to "sign" hashes (basically salting), but in a more secure manner.

Comments

-1

Yes.

Absolutely do not use multiple iterations of a conventional hash function, like md5(md5(md5(password))). At best you will be getting a marginal increase in security (a scheme like this offers hardly any protection against a GPU attack; just pipeline it.) At worst, you're reducing your hash space (and thus security) with every iteration you add. In security, it's wise to assume the worst.

Do use a password has that's been designed by a competent cryptographer to be an effective password hash, and resistant to both brute-force and time-space attacks. These include bcrypt, scrypt, and in some situations PBKDF2. The glibc SHA-256-based hash is also acceptable.

Comments

-1

I'm going to go out on a limb and say it's more secure in certain circumstances... don't downvote me yet though!

From a mathematical / cryptographical point of view, it's less secure, for reasons that I'm sure someone else will give you a clearer explanation of than I could.

However, there exist large databases of MD5 hashes, which are more likely to contain the "password" text than the MD5 of it. So by double-hashing you're reducing the effectiveness of those databases.

Of course, if you use a salt then this advantage (disadvantage?) goes away.

Comments

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.