To those who say it's secure, they are correct in general. "Double" hashing (or the logical expansion of that, iterating a hash function) is absolutely secure if done right, for a specific concern.
To those who say it's insecure, they are correct in this case. The code that is posted in the question is insecure. Let's talk about why:
$hashed_password1 = md5( md5( plaintext_password ) ); $hashed_password2 = md5( plaintext_password );
There are two fundamental properties of a hash function that we're concerned about:
Pre-Image Resistance - Given a hash $h, it should be difficult to find a message $m such that $h === hash($m)
Second-Pre-Image Resistance - Given a message $m1, it should be difficult to find a different message $m2 such that hash($m1) === hash($m2)
Collision Resistance - It should be difficult to find a pair of messages ($m1, $m2) such that hash($m1) === hash($m2) (note that this is similar to Second-Pre-Image resistance, but different in that here the attacker has control over both messages)...
For the storage of passwords, all we really care about is Pre-Image Resistance. The other two would be moot, because $m1 is the user's password we're trying to keep safe. So if the attacker already has it, the hash has nothing to protect...
DISCLAIMER
Everything that follows is based on the premise that all we care about is Pre-Image Resistance. The other two fundamental properties of hash functions may not (and typically don't) hold up in the same way. So the conclusions in this post are only applicable when using hash functions for the storage of passwords. They are not applicable in general...
Let's Get Started
For the sake of this discussion, let's invent our own hash function:
function ourHash($input) { $result = 0; for ($i = 0; $i < strlen($input); $i++) { $result += ord($input[$i]); } return (string) ($result % 256); }
Now it should be pretty obvious what this hash function does. It sums together the ASCII values of each character of input, and then takes the modulo of that result with 256.
So let's test it out:
var_dump( ourHash('abc'), // string(2) "38" ourHash('def'), // string(2) "47" ourHash('hij'), // string(2) "59" ourHash('klm') // string(2) "68" );
Now, let's see what happens if we run it a few times around a function:
$tests = array( "abc", "def", "hij", "klm", ); foreach ($tests as $test) { $hash = $test; for ($i = 0; $i < 100; $i++) { $hash = ourHash($hash); } echo "Hashing $test => $hash\n"; }
That outputs:
Hashing abc => 152 Hashing def => 152 Hashing hij => 155 Hashing klm => 155
Hrm, wow. We've generated collisions!!! Let's try to look at why:
Here's the output of hashing a string of each and every possible hash output:
Hashing 0 => 48 Hashing 1 => 49 Hashing 2 => 50 Hashing 3 => 51 Hashing 4 => 52 Hashing 5 => 53 Hashing 6 => 54 Hashing 7 => 55 Hashing 8 => 56 Hashing 9 => 57 Hashing 10 => 97 Hashing 11 => 98 Hashing 12 => 99 Hashing 13 => 100 Hashing 14 => 101 Hashing 15 => 102 Hashing 16 => 103 Hashing 17 => 104 Hashing 18 => 105 Hashing 19 => 106 Hashing 20 => 98 Hashing 21 => 99 Hashing 22 => 100 Hashing 23 => 101 Hashing 24 => 102 Hashing 25 => 103 Hashing 26 => 104 Hashing 27 => 105 Hashing 28 => 106 Hashing 29 => 107 Hashing 30 => 99 Hashing 31 => 100 Hashing 32 => 101 Hashing 33 => 102 Hashing 34 => 103 Hashing 35 => 104 Hashing 36 => 105 Hashing 37 => 106 Hashing 38 => 107 Hashing 39 => 108 Hashing 40 => 100 Hashing 41 => 101 Hashing 42 => 102 Hashing 43 => 103 Hashing 44 => 104 Hashing 45 => 105 Hashing 46 => 106 Hashing 47 => 107 Hashing 48 => 108 Hashing 49 => 109 Hashing 50 => 101 Hashing 51 => 102 Hashing 52 => 103 Hashing 53 => 104 Hashing 54 => 105 Hashing 55 => 106 Hashing 56 => 107 Hashing 57 => 108 Hashing 58 => 109 Hashing 59 => 110 Hashing 60 => 102 Hashing 61 => 103 Hashing 62 => 104 Hashing 63 => 105 Hashing 64 => 106 Hashing 65 => 107 Hashing 66 => 108 Hashing 67 => 109 Hashing 68 => 110 Hashing 69 => 111 Hashing 70 => 103 Hashing 71 => 104 Hashing 72 => 105 Hashing 73 => 106 Hashing 74 => 107 Hashing 75 => 108 Hashing 76 => 109 Hashing 77 => 110 Hashing 78 => 111 Hashing 79 => 112 Hashing 80 => 104 Hashing 81 => 105 Hashing 82 => 106 Hashing 83 => 107 Hashing 84 => 108 Hashing 85 => 109 Hashing 86 => 110 Hashing 87 => 111 Hashing 88 => 112 Hashing 89 => 113 Hashing 90 => 105 Hashing 91 => 106 Hashing 92 => 107 Hashing 93 => 108 Hashing 94 => 109 Hashing 95 => 110 Hashing 96 => 111 Hashing 97 => 112 Hashing 98 => 113 Hashing 99 => 114 Hashing 100 => 145 Hashing 101 => 146 Hashing 102 => 147 Hashing 103 => 148 Hashing 104 => 149 Hashing 105 => 150 Hashing 106 => 151 Hashing 107 => 152 Hashing 108 => 153 Hashing 109 => 154 Hashing 110 => 146 Hashing 111 => 147 Hashing 112 => 148 Hashing 113 => 149 Hashing 114 => 150 Hashing 115 => 151 Hashing 116 => 152 Hashing 117 => 153 Hashing 118 => 154 Hashing 119 => 155 Hashing 120 => 147 Hashing 121 => 148 Hashing 122 => 149 Hashing 123 => 150 Hashing 124 => 151 Hashing 125 => 152 Hashing 126 => 153 Hashing 127 => 154 Hashing 128 => 155 Hashing 129 => 156 Hashing 130 => 148 Hashing 131 => 149 Hashing 132 => 150 Hashing 133 => 151 Hashing 134 => 152 Hashing 135 => 153 Hashing 136 => 154 Hashing 137 => 155 Hashing 138 => 156 Hashing 139 => 157 Hashing 140 => 149 Hashing 141 => 150 Hashing 142 => 151 Hashing 143 => 152 Hashing 144 => 153 Hashing 145 => 154 Hashing 146 => 155 Hashing 147 => 156 Hashing 148 => 157 Hashing 149 => 158 Hashing 150 => 150 Hashing 151 => 151 Hashing 152 => 152 Hashing 153 => 153 Hashing 154 => 154 Hashing 155 => 155 Hashing 156 => 156 Hashing 157 => 157 Hashing 158 => 158 Hashing 159 => 159 Hashing 160 => 151 Hashing 161 => 152 Hashing 162 => 153 Hashing 163 => 154 Hashing 164 => 155 Hashing 165 => 156 Hashing 166 => 157 Hashing 167 => 158 Hashing 168 => 159 Hashing 169 => 160 Hashing 170 => 152 Hashing 171 => 153 Hashing 172 => 154 Hashing 173 => 155 Hashing 174 => 156 Hashing 175 => 157 Hashing 176 => 158 Hashing 177 => 159 Hashing 178 => 160 Hashing 179 => 161 Hashing 180 => 153 Hashing 181 => 154 Hashing 182 => 155 Hashing 183 => 156 Hashing 184 => 157 Hashing 185 => 158 Hashing 186 => 159 Hashing 187 => 160 Hashing 188 => 161 Hashing 189 => 162 Hashing 190 => 154 Hashing 191 => 155 Hashing 192 => 156 Hashing 193 => 157 Hashing 194 => 158 Hashing 195 => 159 Hashing 196 => 160 Hashing 197 => 161 Hashing 198 => 162 Hashing 199 => 163 Hashing 200 => 146 Hashing 201 => 147 Hashing 202 => 148 Hashing 203 => 149 Hashing 204 => 150 Hashing 205 => 151 Hashing 206 => 152 Hashing 207 => 153 Hashing 208 => 154 Hashing 209 => 155 Hashing 210 => 147 Hashing 211 => 148 Hashing 212 => 149 Hashing 213 => 150 Hashing 214 => 151 Hashing 215 => 152 Hashing 216 => 153 Hashing 217 => 154 Hashing 218 => 155 Hashing 219 => 156 Hashing 220 => 148 Hashing 221 => 149 Hashing 222 => 150 Hashing 223 => 151 Hashing 224 => 152 Hashing 225 => 153 Hashing 226 => 154 Hashing 227 => 155 Hashing 228 => 156 Hashing 229 => 157 Hashing 230 => 149 Hashing 231 => 150 Hashing 232 => 151 Hashing 233 => 152 Hashing 234 => 153 Hashing 235 => 154 Hashing 236 => 155 Hashing 237 => 156 Hashing 238 => 157 Hashing 239 => 158 Hashing 240 => 150 Hashing 241 => 151 Hashing 242 => 152 Hashing 243 => 153 Hashing 244 => 154 Hashing 245 => 155 Hashing 246 => 156 Hashing 247 => 157 Hashing 248 => 158 Hashing 249 => 159 Hashing 250 => 151 Hashing 251 => 152 Hashing 252 => 153 Hashing 253 => 154 Hashing 254 => 155 Hashing 255 => 156
Notice the tendency towards higher numbers. That turns out to be our deadfall. Running the hash 4 times ($hash = ourHash($hash)`, for each element) winds up giving us:
Hashing 0 => 153 Hashing 1 => 154 Hashing 2 => 155 Hashing 3 => 156 Hashing 4 => 157 Hashing 5 => 158 Hashing 6 => 150 Hashing 7 => 151 Hashing 8 => 152 Hashing 9 => 153 Hashing 10 => 157 Hashing 11 => 158 Hashing 12 => 150 Hashing 13 => 154 Hashing 14 => 155 Hashing 15 => 156 Hashing 16 => 157 Hashing 17 => 158 Hashing 18 => 150 Hashing 19 => 151 Hashing 20 => 158 Hashing 21 => 150 Hashing 22 => 154 Hashing 23 => 155 Hashing 24 => 156 Hashing 25 => 157 Hashing 26 => 158 Hashing 27 => 150 Hashing 28 => 151 Hashing 29 => 152 Hashing 30 => 150 Hashing 31 => 154 Hashing 32 => 155 Hashing 33 => 156 Hashing 34 => 157 Hashing 35 => 158 Hashing 36 => 150 Hashing 37 => 151 Hashing 38 => 152 Hashing 39 => 153 Hashing 40 => 154 Hashing 41 => 155 Hashing 42 => 156 Hashing 43 => 157 Hashing 44 => 158 Hashing 45 => 150 Hashing 46 => 151 Hashing 47 => 152 Hashing 48 => 153 Hashing 49 => 154 Hashing 50 => 155 Hashing 51 => 156 Hashing 52 => 157 Hashing 53 => 158 Hashing 54 => 150 Hashing 55 => 151 Hashing 56 => 152 Hashing 57 => 153 Hashing 58 => 154 Hashing 59 => 155 Hashing 60 => 156 Hashing 61 => 157 Hashing 62 => 158 Hashing 63 => 150 Hashing 64 => 151 Hashing 65 => 152 Hashing 66 => 153 Hashing 67 => 154 Hashing 68 => 155 Hashing 69 => 156 Hashing 70 => 157 Hashing 71 => 158 Hashing 72 => 150 Hashing 73 => 151 Hashing 74 => 152 Hashing 75 => 153 Hashing 76 => 154 Hashing 77 => 155 Hashing 78 => 156 Hashing 79 => 157 Hashing 80 => 158 Hashing 81 => 150 Hashing 82 => 151 Hashing 83 => 152 Hashing 84 => 153 Hashing 85 => 154 Hashing 86 => 155 Hashing 87 => 156 Hashing 88 => 157 Hashing 89 => 158 Hashing 90 => 150 Hashing 91 => 151 Hashing 92 => 152 Hashing 93 => 153 Hashing 94 => 154 Hashing 95 => 155 Hashing 96 => 156 Hashing 97 => 157 Hashing 98 => 158 Hashing 99 => 150 Hashing 100 => 154 Hashing 101 => 155 Hashing 102 => 156 Hashing 103 => 157 Hashing 104 => 158 Hashing 105 => 150 Hashing 106 => 151 Hashing 107 => 152 Hashing 108 => 153 Hashing 109 => 154 Hashing 110 => 155 Hashing 111 => 156 Hashing 112 => 157 Hashing 113 => 158 Hashing 114 => 150 Hashing 115 => 151 Hashing 116 => 152 Hashing 117 => 153 Hashing 118 => 154 Hashing 119 => 155 Hashing 120 => 156 Hashing 121 => 157 Hashing 122 => 158 Hashing 123 => 150 Hashing 124 => 151 Hashing 125 => 152 Hashing 126 => 153 Hashing 127 => 154 Hashing 128 => 155 Hashing 129 => 156 Hashing 130 => 157 Hashing 131 => 158 Hashing 132 => 150 Hashing 133 => 151 Hashing 134 => 152 Hashing 135 => 153 Hashing 136 => 154 Hashing 137 => 155 Hashing 138 => 156 Hashing 139 => 157 Hashing 140 => 158 Hashing 141 => 150 Hashing 142 => 151 Hashing 143 => 152 Hashing 144 => 153 Hashing 145 => 154 Hashing 146 => 155 Hashing 147 => 156 Hashing 148 => 157 Hashing 149 => 158 Hashing 150 => 150 Hashing 151 => 151 Hashing 152 => 152 Hashing 153 => 153 Hashing 154 => 154 Hashing 155 => 155 Hashing 156 => 156 Hashing 157 => 157 Hashing 158 => 158 Hashing 159 => 159 Hashing 160 => 151 Hashing 161 => 152 Hashing 162 => 153 Hashing 163 => 154 Hashing 164 => 155 Hashing 165 => 156 Hashing 166 => 157 Hashing 167 => 158 Hashing 168 => 159 Hashing 169 => 151 Hashing 170 => 152 Hashing 171 => 153 Hashing 172 => 154 Hashing 173 => 155 Hashing 174 => 156 Hashing 175 => 157 Hashing 176 => 158 Hashing 177 => 159 Hashing 178 => 151 Hashing 179 => 152 Hashing 180 => 153 Hashing 181 => 154 Hashing 182 => 155 Hashing 183 => 156 Hashing 184 => 157 Hashing 185 => 158 Hashing 186 => 159 Hashing 187 => 151 Hashing 188 => 152 Hashing 189 => 153 Hashing 190 => 154 Hashing 191 => 155 Hashing 192 => 156 Hashing 193 => 157 Hashing 194 => 158 Hashing 195 => 159 Hashing 196 => 151 Hashing 197 => 152 Hashing 198 => 153 Hashing 199 => 154 Hashing 200 => 155 Hashing 201 => 156 Hashing 202 => 157 Hashing 203 => 158 Hashing 204 => 150 Hashing 205 => 151 Hashing 206 => 152 Hashing 207 => 153 Hashing 208 => 154 Hashing 209 => 155 Hashing 210 => 156 Hashing 211 => 157 Hashing 212 => 158 Hashing 213 => 150 Hashing 214 => 151 Hashing 215 => 152 Hashing 216 => 153 Hashing 217 => 154 Hashing 218 => 155 Hashing 219 => 156 Hashing 220 => 157 Hashing 221 => 158 Hashing 222 => 150 Hashing 223 => 151 Hashing 224 => 152 Hashing 225 => 153 Hashing 226 => 154 Hashing 227 => 155 Hashing 228 => 156 Hashing 229 => 157 Hashing 230 => 158 Hashing 231 => 150 Hashing 232 => 151 Hashing 233 => 152 Hashing 234 => 153 Hashing 235 => 154 Hashing 236 => 155 Hashing 237 => 156 Hashing 238 => 157 Hashing 239 => 158 Hashing 240 => 150 Hashing 241 => 151 Hashing 242 => 152 Hashing 243 => 153 Hashing 244 => 154 Hashing 245 => 155 Hashing 246 => 156 Hashing 247 => 157 Hashing 248 => 158 Hashing 249 => 159 Hashing 250 => 151 Hashing 251 => 152 Hashing 252 => 153 Hashing 253 => 154 Hashing 254 => 155 Hashing 255 => 156
We've narrowed ourselves down to 8 values... That's bad... Our original function mapped S(∞) onto S(256). That is we've created a Surjective Function mapping $input to $output.
Since we have a Surjective function, we have no guarantee the mapping for any subset of the input won't have collisions (in fact, in practice they will).
That's what happened here! Our function was bad, but that's not why this worked (that's why it worked so quickly and so completely).
The same thing happens with MD5. It maps S(∞) onto S(2^128). Since there's no guarantee that running MD5(S(output)) will be Injective, meaning that it won't have collisions.
TL/DR Section
Therefore, since feeding the output back to md5 directly can generate collisions, every iteration will increase the chance of collisions. This is a linear increase however, which means that while the result set of 2^128 is reduced, it's not significantly reduced fast enough to be a critical flaw.
So,
$output = md5($input); // 2^128 possibilities $output = md5($output); // < 2^128 possibilities $output = md5($output); // < 2^128 possibilities $output = md5($output); // < 2^128 possibilities $output = md5($output); // < 2^128 possibilities
The more times you iterate, the further the reduction goes.
The Fix
Fortunately for us, there's a trivial way to fix this: Feed back something into the further iterations:
$output = md5($input); // 2^128 possibilities $output = md5($input . $output); // 2^128 possibilities $output = md5($input . $output); // 2^128 possibilities $output = md5($input . $output); // 2^128 possibilities $output = md5($input . $output); // 2^128 possibilities
Note that the further iterations aren't 2^128 for each individual value for $input. Meaning that we may be able to generate $input values that still collide down the line (and hence will settle or resonate at far less than 2^128 possible outputs). But the general case for $input is still as strong as it was for a single round.
Wait, was it? Let's test this out with our ourHash() function. Switching to $hash = ourHash($input . $hash);, for 100 iterations:
Hashing 0 => 201 Hashing 1 => 212 Hashing 2 => 199 Hashing 3 => 201 Hashing 4 => 203 Hashing 5 => 205 Hashing 6 => 207 Hashing 7 => 209 Hashing 8 => 211 Hashing 9 => 204 Hashing 10 => 251 Hashing 11 => 147 Hashing 12 => 251 Hashing 13 => 148 Hashing 14 => 253 Hashing 15 => 0 Hashing 16 => 1 Hashing 17 => 2 Hashing 18 => 161 Hashing 19 => 163 Hashing 20 => 147 Hashing 21 => 251 Hashing 22 => 148 Hashing 23 => 253 Hashing 24 => 0 Hashing 25 => 1 Hashing 26 => 2 Hashing 27 => 161 Hashing 28 => 163 Hashing 29 => 8 Hashing 30 => 251 Hashing 31 => 148 Hashing 32 => 253 Hashing 33 => 0 Hashing 34 => 1 Hashing 35 => 2 Hashing 36 => 161 Hashing 37 => 163 Hashing 38 => 8 Hashing 39 => 4 Hashing 40 => 148 Hashing 41 => 253 Hashing 42 => 0 Hashing 43 => 1 Hashing 44 => 2 Hashing 45 => 161 Hashing 46 => 163 Hashing 47 => 8 Hashing 48 => 4 Hashing 49 => 9 Hashing 50 => 253 Hashing 51 => 0 Hashing 52 => 1 Hashing 53 => 2 Hashing 54 => 161 Hashing 55 => 163 Hashing 56 => 8 Hashing 57 => 4 Hashing 58 => 9 Hashing 59 => 11 Hashing 60 => 0 Hashing 61 => 1 Hashing 62 => 2 Hashing 63 => 161 Hashing 64 => 163 Hashing 65 => 8 Hashing 66 => 4 Hashing 67 => 9 Hashing 68 => 11 Hashing 69 => 4 Hashing 70 => 1 Hashing 71 => 2 Hashing 72 => 161 Hashing 73 => 163 Hashing 74 => 8 Hashing 75 => 4 Hashing 76 => 9 Hashing 77 => 11 Hashing 78 => 4 Hashing 79 => 3 Hashing 80 => 2 Hashing 81 => 161 Hashing 82 => 163 Hashing 83 => 8 Hashing 84 => 4 Hashing 85 => 9 Hashing 86 => 11 Hashing 87 => 4 Hashing 88 => 3 Hashing 89 => 17 Hashing 90 => 161 Hashing 91 => 163 Hashing 92 => 8 Hashing 93 => 4 Hashing 94 => 9 Hashing 95 => 11 Hashing 96 => 4 Hashing 97 => 3 Hashing 98 => 17 Hashing 99 => 13 Hashing 100 => 246 Hashing 101 => 248 Hashing 102 => 49 Hashing 103 => 44 Hashing 104 => 255 Hashing 105 => 198 Hashing 106 => 43 Hashing 107 => 51 Hashing 108 => 202 Hashing 109 => 2 Hashing 110 => 248 Hashing 111 => 49 Hashing 112 => 44 Hashing 113 => 255 Hashing 114 => 198 Hashing 115 => 43 Hashing 116 => 51 Hashing 117 => 202 Hashing 118 => 2 Hashing 119 => 51 Hashing 120 => 49 Hashing 121 => 44 Hashing 122 => 255 Hashing 123 => 198 Hashing 124 => 43 Hashing 125 => 51 Hashing 126 => 202 Hashing 127 => 2 Hashing 128 => 51 Hashing 129 => 53 Hashing 130 => 44 Hashing 131 => 255 Hashing 132 => 198 Hashing 133 => 43 Hashing 134 => 51 Hashing 135 => 202 Hashing 136 => 2 Hashing 137 => 51 Hashing 138 => 53 Hashing 139 => 55 Hashing 140 => 255 Hashing 141 => 198 Hashing 142 => 43 Hashing 143 => 51 Hashing 144 => 202 Hashing 145 => 2 Hashing 146 => 51 Hashing 147 => 53 Hashing 148 => 55 Hashing 149 => 58 Hashing 150 => 198 Hashing 151 => 43 Hashing 152 => 51 Hashing 153 => 202 Hashing 154 => 2 Hashing 155 => 51 Hashing 156 => 53 Hashing 157 => 55 Hashing 158 => 58 Hashing 159 => 0 Hashing 160 => 43 Hashing 161 => 51 Hashing 162 => 202 Hashing 163 => 2 Hashing 164 => 51 Hashing 165 => 53 Hashing 166 => 55 Hashing 167 => 58 Hashing 168 => 0 Hashing 169 => 209 Hashing 170 => 51 Hashing 171 => 202 Hashing 172 => 2 Hashing 173 => 51 Hashing 174 => 53 Hashing 175 => 55 Hashing 176 => 58 Hashing 177 => 0 Hashing 178 => 209 Hashing 179 => 216 Hashing 180 => 202 Hashing 181 => 2 Hashing 182 => 51 Hashing 183 => 53 Hashing 184 => 55 Hashing 185 => 58 Hashing 186 => 0 Hashing 187 => 209 Hashing 188 => 216 Hashing 189 => 219 Hashing 190 => 2 Hashing 191 => 51 Hashing 192 => 53 Hashing 193 => 55 Hashing 194 => 58 Hashing 195 => 0 Hashing 196 => 209 Hashing 197 => 216 Hashing 198 => 219 Hashing 199 => 220 Hashing 200 => 248 Hashing 201 => 49 Hashing 202 => 44 Hashing 203 => 255 Hashing 204 => 198 Hashing 205 => 43 Hashing 206 => 51 Hashing 207 => 202 Hashing 208 => 2 Hashing 209 => 51 Hashing 210 => 49 Hashing 211 => 44 Hashing 212 => 255 Hashing 213 => 198 Hashing 214 => 43 Hashing 215 => 51 Hashing 216 => 202 Hashing 217 => 2 Hashing 218 => 51 Hashing 219 => 53 Hashing 220 => 44 Hashing 221 => 255 Hashing 222 => 198 Hashing 223 => 43 Hashing 224 => 51 Hashing 225 => 202 Hashing 226 => 2 Hashing 227 => 51 Hashing 228 => 53 Hashing 229 => 55 Hashing 230 => 255 Hashing 231 => 198 Hashing 232 => 43 Hashing 233 => 51 Hashing 234 => 202 Hashing 235 => 2 Hashing 236 => 51 Hashing 237 => 53 Hashing 238 => 55 Hashing 239 => 58 Hashing 240 => 198 Hashing 241 => 43 Hashing 242 => 51 Hashing 243 => 202 Hashing 244 => 2 Hashing 245 => 51 Hashing 246 => 53 Hashing 247 => 55 Hashing 248 => 58 Hashing 249 => 0 Hashing 250 => 43 Hashing 251 => 51 Hashing 252 => 202 Hashing 253 => 2 Hashing 254 => 51 Hashing 255 => 53
There's still a rough pattern there, but note that it's no more of a pattern than our underlying function (which was already quite weak).
Notice however that 0 and 3 became collisions, even though they weren't in the single run. That's an application of what I said before (that the collision resistance stays the same for the set of all inputs, but specific collision routes may open up due to flaws in the underlying algorithm).
TL/DR Section
By feeding back the input into each iteration, we effectively break any collisions that may have occurred in the prior iteration.
Therefore, md5($input . md5($input)); should be (theoretically at least) as strong as md5($input).
Is This Important?
Yes. This is one of the reasons that PBKDF2 replaced PBKDF1 in RFC 2898. Consider the inner loops of the two::
PBKDF1:
T_1 = Hash (P || S) , T_2 = Hash (T_1) , ... T_c = Hash (T_{c-1})
Where c is the iteration count, P is the Password and S is the salt
PBKDF2:
U_1 = PRF (P, S || INT (i)) , U_2 = PRF (P, U_1) , ... U_c = PRF (P, U_{c-1})
Where PRF is really just a HMAC. But for our purposes here, let's just say that PRF(P, S) = Hash(P || S) (that is, the PRF of 2 inputs is the same, roughly speaking, as hash with the two concatenated together). It's very much not, but for our purposes it is.
So PBKDF2 maintains the collision resistance of the underlying Hash function, where PBKDF1 does not.
Tie-ing All Of It Together:
We know of secure ways of iterating a hash. In fact:
$hash = $input; $i = 10000; do { $hash = hash($input . $hash); } while ($i-- > 0);
Is typically safe.
Now, to go into why we would want to hash it, let's analyze the entropy movement.
A hash takes in the infinite set: S(∞) and produces a smaller, consistently sized set S(n). The next iteration (assuming the input is passed back in) maps S(∞) onto S(n) again:
S(∞) -> S(n) S(∞) -> S(n) S(∞) -> S(n) S(∞) -> S(n) S(∞) -> S(n) S(∞) -> S(n)
Notice that the final output has exactly the same amount of entropy as the first one. Iterating will not "make it more obscured". The entropy is identical. There's no magic source of unpredictability (it's a Pseudo-Random-Function, not a Random Function).
There is however a gain to iterating. It makes the hashing process artificially slower. And that's why iterating can be a good idea. In fact, it's the basic principle of most modern password hashing algorithms (the fact that doing something over-and-over makes it slower).
Slow is good, because it's combating the primary security threat: brute forcing. The slower we make our hashing algorithm, the harder attackers have to work to attack password hashes stolen from us. And that's a good thing!!!
Hash(password)andHash(Hash(password))are equally insecure. Both lack the notion of Semantic Security. That is, the output is distinguishable from random. For example,MD5("password")is5f4dcc3b5aa765d61d8327deb882cf99. I know that's the MD5 hash ofpassword, and it is distinguishable from random. Instead, you should use an HMAC. Its provably secure and its a PRF.