I found the following lines in the scikit-learn package:
if is_sparse: problem = csr_set_problem( (<np.ndarray[np.float64_t, ndim=1, mode='c']>X.data).data, (<np.ndarray[np.int32_t, ndim=1, mode='c']>X.indices).shape, (<np.ndarray[np.int32_t, ndim=1, mode='c']>X.indices).data, (<np.ndarray[np.int32_t, ndim=1, mode='c']>X.indptr).shape, (<np.ndarray[np.int32_t, ndim=1, mode='c']>X.indptr).data, Y.data, (<np.int32_t>X.shape[1]), bias, sample_weight.data) else: ... All my searches for "angle brackets in Python" give answers about documentation or decorator syntax, which I am pretty sure this is neither because it looks like actual logic.
What do the angle brackets in the above Python code do and where can I learn more about them?