I'm trying to do PCA with pretty simple dataset, but I'm still getting this error: AttributeError: 'PCA' object has no attribute 'singular_values_'
Here is code:
import numpy as np from sklearn.decomposition import PCA X = np.array([[0.92, 0.51], [0.72, 0.59], [0.83, 1.03], [0.81, 1.21], [0.82, 0.63], [0.93, 0.68], [0.84, 0.57], [0.89, 1.52], [0.89, 1.04], [0.95, 0.99]]) pca = PCA(n_components=2) pca.fit_transform(X) print(pca.mean_) print(pca.components_) print(pca.explained_variance_) print(pca.explained_variance_ratio_) print(pca.singular_values_) print(pca.n_components_) print(pca.noise_variance_) I get everything except for singular_values_
Thank you for your help!