Assuming the size of your dataframes are the same, you can assign the RESULT_df['RESULT'].values to your original dataframe. This way, you don't have to worry about indexing issues.
# pre 0.24 feature_file_df['RESULT'] = RESULT_df['RESULT'].values # >= 0.24 feature_file_df['RESULT'] = RESULT_df['RESULT'].to_numpy()
Minimal Code Sample
df A B 0 -1.202564 2.786483 1 0.180380 0.259736 2 -0.295206 1.175316 3 1.683482 0.927719 4 -0.199904 1.077655 df2 C 11 -0.140670 12 1.496007 13 0.263425 14 -0.557958 15 -0.018375
Let's try direct assignment first.
df['C'] = df2['C'] df A B C 0 -1.202564 2.786483 NaN 1 0.180380 0.259736 NaN 2 -0.295206 1.175316 NaN 3 1.683482 0.927719 NaN 4 -0.199904 1.077655 NaN
Now, assign the array returned by .values (or .to_numpy() for pandas versions >0.24). .values returns a numpy array which does not have an index.
df2['C'].values array([-0.141, 1.496, 0.263, -0.558, -0.018]) df['C'] = df2['C'].values df A B C 0 -1.202564 2.786483 -0.140670 1 0.180380 0.259736 1.496007 2 -0.295206 1.175316 0.263425 3 1.683482 0.927719 -0.557958 4 -0.199904 1.077655 -0.018375