Wikipedia suggests using Newton's method. Here's how that would look. We'll start with some boilerplate. ensure is a little combinator I've used fairly frequently. It's written to be very general, but I've included a short comment that should be pretty explanatory for how we'll plan to use it.
import Control.Applicative import Control.Monad ensure :: Alternative f => (a -> Bool) -> a -> f a ensure p x = x <$ guard (p x) -- ensure p x | p x = Just x -- | otherwise = Nothing
Here's the implementation of the formula given by Wikipedia for taking one step in Newton's method. x is our current guess about the square root, and n is the number we're taking the square root of.
stepApprox :: Integer -> Integer -> Integer stepApprox x n = (x + n `div` x) `div` 2
Now we can recursively call this stepping function until we get the floor of the square root. Since we're using integer division, the right termination condition is to watch for the next step of the approximation to be equal or one greater to the current step. This is the only recursive function.
iterateStepApprox :: Integer -> Integer -> Integer iterateStepApprox x n = case x' - x of 0 -> x 1 -> x _ -> iterateStepApprox x' n where x' = stepApprox x n
To wrap the whole development up in a nice API, to check if a number is a square we can just check that the floor of its square root squares to it. We also need to pick a starting approximation, but we don't have to be super smart -- Newton's method converges very quickly for square roots. We'll pick half the number (rounded up) as our approximation. To avoid division by zero and other nonsense, we'll make zero and negative numbers special cases.
isqrt :: Integer -> Maybe Integer isqrt n | n < 0 = Nothing isqrt 0 = Just 0 isqrt n = ensure (\x -> x*x == n) (iterateStepApprox ((n+1)`div`2) n)
Now we're done! It's pretty fast even for large numbers:
> :set +s > isqrt (10^10000) == Just (10^5000) True (0.58 secs, 182,610,408 bytes)
Yours would spend rather a longer time than the universe has got left computing that. It is also marginally faster than the binary search algorithm in my tests. (Of course, not hand-rolling it yourself is several orders of magnitude faster still, probably in part because it uses a better, but more complicated, algorithm based on Karatsuba multiplication.)
perfectSquareuses is actually known as corecursive (but for the purposes of a class it will count as recursive I'm sure)