Is there a way for a Scikit-learn Imputer to look for and replace multiple values which are considered "missing values"?
For example, I would like to do something like
imp = Imputer(missing_values=(7,8,9)) But according to the docs, the missing_values parameter only accepts a single integer:
missing_values : integer or “NaN”, optional (default=”NaN”)
The placeholder for the missing values. All occurrences of missing_values will be imputed. For missing values encoded as np.nan, use the string value “NaN”.