The second is also known as the Cake pattern. It has the benefit that the code inside the class that has a trait mixed in becomes independent of the particular implementation of the methods and types in that trait. It allows to use the members of the trait without knowing what's their concrete implementation.
trait Logging { def log(msg: String) } trait App extends Logging { log("My app started.") }
Above, the Logging trait is the requirement for the App (requirements can also be expressed with self-types). Then, at some point in your application you can decide what the implementation will be and mix the implementation trait into the concrete class.
trait ConsoleLogging extends Logging { def log(msg: String) = println(msg) } object MyApp extends App with ConsoleLogging
This has an advantage over imports, in the sense that the requirements of your piece of code aren't bound to the implementation defined by the import statement. Furthermore, it allows you to build and distribute an API which can be used in a different build somewhere else provided that its requirements are met by mixing in a concrete implementation.
However, there are a few things to be careful with when using this pattern.
- All of the classes defined inside the trait will have a reference to the outer class. This can be an issue where performance is concerned, or when you're using serialization (when the outer class is not serializable, or worse, if it is, but you don't want it to be serialized).
- If your 'module' gets really large, you will either have a very big trait and a very big source file, or will have to distribute the module trait code across several files. This can lead to some boilerplate.
- It can force you to have to write your entire application using this paradigm. Before you know it, every class will have to have its requirements mixed in.
- The concrete implementation must be known at compile time, unless you use some sort of hand-written delegation. You cannot mix in an implementation trait dynamically based on a value available at runtime.
I guess the library designers didn't regard any of the above as an issue where Parsers are concerned.