I am trying to take a artist with matching id that make music across various singular to combinations of genres.
This is what I am trying to do
Artist | Id | Genre | Jazz | Blues | Rock | Trap | Rap | Hip-Hop | Pop | Rb | ---------------------------------------------------------------------------------------------------- Bob | 1 | [Jazz, Blues] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 ---------------------------------------------------------------------------------------------------- Fred | 2 | [Rock,Jazz] | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 ---------------------------------------------------------------------------------------------------- Jeff | 3 | [Trap, Rap, Hip-Hop] | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 ---------------------------------------------------------------------------------------------------- Amy | 4 | [Pop, Rock, Jazz] | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 ---------------------------------------------------------------------------------------------------- Mary | 5 | [Hip-Hop, Jazz, Rb] | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 ---------------------------------------------------------------------------------------------------- this is the error i get
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-50-7a4ed81e14d7> in <module> 11 for index, row in artist_df.iterrows(): 12 x.append(index) ---> 13 for i in row['genre']: 14 artists_with_genres.at[index, genre] = 1 15 TypeError: 'float' object is not iterable These (artists) genres are attributes I will use to help to determine a similar artists when combined with other factors like years, songs or demographics.
The new columns I am creating and iterating through will specify whether a artist is in a genre. With 1/0 to simply represent whether the artist is rock/hip-hop/trap etc. or not. using binary representation of attributes.
this is the current dataframe
Took my data frame and split the genres into individual so I can convert to 1/0 binary representation.
Do I need to set genre to the index?
1st took data frame like this
Artist | Id | Genre | -------------------------------------- Bob | 1 | Jazz | Blues -------------------------------------- Fred | 2 | Rock | Jazz -------------------------------------- Jeff | 3 | Trap | Rap | Hip-Hop -------------------------------------- Amy | 4 | Pop | Rock | Jazz -------------------------------------- Mary | 5 | Hip-Hop | Jazz | Rb This is what I am trying to do
Artist | Id | Genre | Jazz | Blues | Rock | Trap | Rap | Hip-Hop | Pop | Rb | ---------------------------------------------------------------------------------------------------- Bob | 1 | [Jazz, Blues] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 ---------------------------------------------------------------------------------------------------- Fred | 2 | [Rock,Jazz] | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 ---------------------------------------------------------------------------------------------------- Jeff | 3 | [Trap, Rap, Hip-Hop] | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 ---------------------------------------------------------------------------------------------------- Amy | 4 | [Pop, Rock, Jazz] | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 ---------------------------------------------------------------------------------------------------- Mary | 5 | [Hip-Hop, Jazz, Rb] | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 ---------------------------------------------------------------------------------------------------- Every genre is separated by a | so we simply have to call the split function on |.
[![artist_df\['genres'\] = artist_df.genres.str.split('|') artist_df.head()][1]][1] First make a copy of the df into df.
artists_with_genres = df.copy(deep=True) Then iterate through df, then append the artists genres as columns of 1s or 0s.
1 if that column contains artists in the genre at the present index and 0 if not.
x = [] for index, row in artist_df.iterrows(): x.append(index) for genre in row['genres']: artists_with_genres.at[index, genre] = 1 **Confirm that every row has been iterated and acted upon.** print(len(x) == len(artist_df)) artists_with_genres.head(30) Filling in the NaN values with 0 to show that a artist doesn't have that column's genre.
artists_with_genres = artists_with_genres.fillna(0) artists_with_genres.head(3) 