I know a bit of LaTeX but struggle with making large multi-line equations look professional. Apologies if this is the wrong way/place to ask. Literally any help would be grand. Specifically I would like the formatting to be on the left.
(Here is some LaTeX for reference...)
\begin{proof} First we prove \eqref{E-alpha-1}. \begin{align} \left|\mathbf{E}_{\alpha,1}^{(\beta)}( t) v\right|_{\mu} = \sum_{j=1}^{\infty}\lambda_j^{\mu}\langle(E_{\alpha,1}^{(\beta)}(t)v,e_j\rangle^2 \end{align} Note that $\langle(\mathbf{E}_{\alpha,1}^{(\beta)}t)v,e_j\rangle = \sum_{k=0}^{\infty}\frac{\langle (-A)^{\beta k}t^{\alpha k}v,e_j\rangle}{\Gamma(\alpha k+1)} = \sum_{k=0}^{\infty}\frac{\langle (-\lambda_j)^{\beta k}t^{\alpha k}v,e_j\rangle}{\Gamma(\alpha k+1)} = E_{\alpha,1}(-\lambda_j^{\beta} t^{\alpha})\langle v, e_j \rangle$. Using that $A^{\beta k}e_j = \lambda_j^{\beta k} e_j$ whenever $e_j$ are the eigenvectors of $A$. Next we use the result that $|E_{\alpha,1}(z)|^2\leq \frac{C}{(1+|z|)^2}$ Thus \begin{align} |\mathbf{E}_{\alpha,1}^{(\beta)}( t) v|_{\mu}^2 = \sum_{j=1}^{\infty}\lambda_j^{\mu}\langle(E_{\alpha,1}^{(\beta)}(t)v,e_j\rangle^2 = \sum_{j=1}^{\infty}\lambda_j^{\mu}\langle v, e_j \rangle^2 |E_{\alpha,1}(-\lambda_j^{\beta} t^{\alpha})|^2 \\ \leq \sum_{j=1}^{\infty}\lambda_j^{\mu}\langle v, e_j \rangle^2 \frac{1}{(1+\lambda_j^{\beta}t^{\alpha})^2}\\ \leq C t^{-\frac{\alpha}{\beta}(\mu - \nu)} \sum_{j=1}^{\infty}\frac{(\lambda_j^\beta t^{\alpha})^{\frac{\mu-\nu}{\beta}}}{(1+\lambda_j^{\beta}t^{\alpha})^2}\lambda^{\nu}_j\langle v, e_j \rangle^2 \\ \leq Ct^{-\frac{\alpha(\mu-\nu)}{\beta}}\sum_{j=1}^{\infty}\lambda_j^{\nu}\langle v, e_j\rangle^2 \leq Ct^{-\frac{\alpha(\mu-\nu)}{\beta}}|v|_{\nu}^2 \end{align} \end{proof} ) 

{}in the editor or use```before and after it, also show a complete document, so people can run your code and see the problem you are asking about