9

I have data with 5 different columns and their value varies from each other.

Actual gen Storage Solar Gen Total Gen Frequency 1464 1838 1804 18266 51 2330 2262 518 4900 51 2195 923 919 8732 49 2036 1249 1316 3438 48 2910 534 1212 4271 47 857 2452 1272 6466 50 2331 990 2729 14083 51 2604 767 2730 19037 47 993 2606 705 17314 51 2542 213 548 10584 52 2030 942 304 11578 52 562 414 2870 840 52 1111 1323 337 19612 49 1863 2498 1992 18941 48 1575 2262 1576 3322 48 1223 657 661 10292 47 1850 1920 2986 10130 48 2786 1119 933 2680 52 2333 1245 1909 14116 48 1606 2934 1547 13767 51 

So in from this data I want to plot a graph with 3 y-axis. One for the frequency, second for the Total Gen and third is for Actual gen, Storage and Solar Gen. Frequency should be on the secondary Y-axis(Right side) and the Rest of them should be on the left side.

  • For frequency as you can see the values are very random between 47 to 52 that's why it should be on the right side, like this: enter image description here

  • For Total Gen value are very high as compared to others as they are from 100-20000 so that's I can't merge them with others, something like this: enter image description here Here I want:

  • Y-axis title 1 = Actual gen, Storage, and Solar gen

  • Y-axis title 2 = Total gen

  • Y-axis title 3 = Frequency

My approach:

import logging import pandas as pd import plotly.graph_objs as go import plotly.offline as pyo import xlwings as xw from plotly.subplots import make_subplots app = xw.App(visible=False) try: wb = app.books.open('2020 10 08 0000 (Float).xlsx') sheet = wb.sheets[0] actual_gen = sheet.range('A2:A21').value frequency = sheet.range('E2:E21').value storage = sheet.range('B2:B21').value total_gen = sheet.range('D2:D21').value solar_gen = sheet.range('C2:C21').value except Exception as e: logging.exception("Something awful happened!") print(e) finally: app.quit() app.kill() # Create figure with secondary y-axis fig = make_subplots(specs=[[{"secondary_y": True}]]) # Add traces fig.add_trace( go.Scatter(y=storage, name="BESS(KW)"), ) fig.add_trace( go.Scatter(y=actual_gen, name="Act(KW)"), ) fig.add_trace( go.Scatter(y=solar_gen, name="Solar Gen") ) fig.add_trace( go.Scatter(x=x_values, y=total_gen, name="Total Gen",yaxis = 'y2') ) fig.add_trace( go.Scatter(y=frequency, name="Frequency",yaxis = 'y1'), ) fig.update_layout( title_text = '8th oct BESS', yaxis2=dict(title="BESS(KW)",titlefont=dict(color="red"), tickfont=dict(color="red")), yaxis3=dict(title="Actual Gen(KW)",titlefont=dict(color="orange"),tickfont=dict(color="orange"), anchor="free", overlaying="y2", side="left"), yaxis4=dict(title="Solar Gen(KW)",titlefont=dict(color="pink"),tickfont=dict(color="pink"), anchor="x2",overlaying="y2", side="left"), yaxis5=dict(title="Total Gen(KW)",titlefont=dict(color="cyan"),tickfont=dict(color="cyan"), anchor="free",overlaying="y2", side="left"), yaxis6=dict(title="Frequency",titlefont=dict(color="purple"),tickfont=dict(color="purple"), anchor="free",overlaying="y2", side="right")) fig.show() 

Can someone please help?

4
  • Please clarify the exact issue. I see you have the Plotly docs ... where are you getting stuck? Additionally, perhaps Total Gen can be re-calculated to a log10 scale? Commented Nov 27, 2020 at 12:50
  • Sir, I am actually getting stuck at Total_gen plot. I am not able to plot the y-axis title 2. Commented Nov 27, 2020 at 12:56
  • 1
    Sure. I did the changes. Thank you Commented Nov 27, 2020 at 13:39
  • Thank you so much, sir. That's really helpful. Commented Nov 27, 2020 at 14:55

2 Answers 2

8

Here is an example of how multi-level y-axes can be created.

Essentially, the keys to this are:

  • Create a key in the layout dict, for each axis, then assign a trace to the that axis.
  • Set the xaxis domain to be narrower than [0, 1] (for example [0.2, 1]), thus pushing the left edge of the graph to the right, making room for the multi-level y-axis.

A link to the official Plotly docs on the subject.

To make reading the data easier for this demonstration, I have taken the liberty of storing your dataset as a CSV file, rather than Excel - then used the pandas.read_csv() function to load the dataset into a pandas.DataFrame, which is then passed into the plotting functions as data columns.

Example:

Read the dataset:

df = pd.read_csv('energy.csv') 

Sample plotting code:

import plotly.io as pio layout = {'title': '8th Oct BESS'} traces = [] traces.append({'y': df['storage'], 'name': 'Storage'}) traces.append({'y': df['actual_gen'], 'name': 'Actual Gen'}) traces.append({'y': df['solar_gen'], 'name': 'Solar Gen'}) traces.append({'y': df['total_gen'], 'name': 'Total Gen', 'yaxis': 'y2'}) traces.append({'y': df['frequency'], 'name': 'Frequency', 'yaxis': 'y3'}) layout['xaxis'] = {'domain': [0.12, 0.95]} layout['yaxis1'] = {'title': 'Actual Gen, Storage, Solar Gen', 'titlefont': {'color': 'orange'}, 'tickfont': {'color': 'orange'}} layout['yaxis2'] = {'title': 'Total Gen', 'side': 'left', 'overlaying': 'y', 'anchor': 'free', 'titlefont': {'color': 'red'}, 'tickfont': {'color': 'red'}} layout['yaxis3'] = {'title': 'Frequency', 'side': 'right', 'overlaying': 'y', 'anchor': 'x', 'titlefont': {'color': 'purple'}, 'tickfont': {'color': 'purple'}} pio.show({'data': traces, 'layout': layout}) 

Graph:

Given the nature of these traces, they overlay each other heavily, which could make graph interpretation difficult.

A couple of options are available:

  • Change the range parameter for each y-axis so the axis only occupies a portion of the graph. For example, if a dataset ranges from 0-5, set the corresponding yaxis range parameter to [-15, 5], which will push that trace near the top of the graph.

  • Consider using subplots, where like-traces can be grouped ... or each trace can have it's own graph. Here are Plotly's docs on subplots.

enter image description here

Comments (TL;DR):

The example code shown here uses the lower-level Plotly API, rather than a convenience wrapper such as graph_objects or express. The reason is that I (personally) feel it's helpful to users to show what is occurring 'under the hood', rather than masking the underlying code logic with a convenience wrapper.

This way, when the user needs to modify a finer detail of the graph, they will have a better understanding of the lists and dicts which Plotly is constructing for the underlying graphing engine (orca).

Sign up to request clarification or add additional context in comments.

2 Comments

Thanks for the answer. How is pio defined?
@Emad - My pleasure. pio is from import plotly.io as pio. (Have updated the answer)
3

This is my function to plot any dataframe with index as x in the x axis. Should support any size of dataframes

def plotly_multi(data): if data.shape[1]>2: fig = go.Figure() fig.add_trace( go.Scatter(x=data.index, y=data.iloc[:, 0], name=data.columns[0])) fig.update_layout( xaxis=dict(domain=[0.1, 0.9]), yaxis=dict(title=data.columns[0]), yaxis2=dict(title=data.columns[1], anchor="x", overlaying="y", side="right")) for i, col in enumerate(data.columns[1:], 1): fig.add_trace( go.Scatter(x=data.index,y=data[col],name=col,yaxis=f"y{i+1}")) for i, col in enumerate(data.columns[2:], 2): axis = f"yaxis{i+1}" if i%2 == 0: side = "left" position = (i-1)*0.05 else: side = "right" position = 1 - (i-2)*0.05 axis_value = dict( title=col, anchor="free", overlaying="y", side=side, position=position) exec(f"fig.update_layout({axis} = axis_value)") if data.shape[1]==2: fig = make_subplots(specs=[[{"secondary_y": True}]]) # Add traces fig.add_trace( go.Scatter(x=data.index, y=data.iloc[:, 0], name=data.columns[0]), secondary_y=False,) fig.add_trace( go.Scatter(x=data.index, y=data.iloc[:, 1], name=data.columns[1]), secondary_y=True,) # Set x-axis title fig.update_xaxes(title_text="Date") # Set y-axes titles fig.update_yaxes(title_text=data.columns[0], secondary_y=False) fig.update_yaxes(title_text=data.columns[0], secondary_y=True) if data.shape[1] == 1: fig = px.line(data.reset_index(), x = data.index.name, y = data.columns) fig.update_layout( title_text="Data", width=800,) fig.show() 

Comments

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.