There is a certain amount of overhead in creating a multiprocessing pool because creating processes is, unlike creating threads, a fairly costly operation. Then those submitted tasks, represented by each element of the iterable being passed to the map method, are gathered up in "chunks" and written to a multiprocessing queue of tasks that are read by the pool processes. This data has to move from one address space to another and that has a cost associated with it. Finally when your worker function, folderStatistic, returns its result (which is None in this case), that data has to be moved from one process's address space back to the main process's address space and that too has a cost associated with it.
All of those added costs become worthwhile when your worker function is sufficiently CPU-intensive such that these additional costs is small compared to the savings gained by having the tasks run in parallel. But your worker function's CPU requirements are so small as to reap any benefit from multiprocessing.
Here is a demo comparing single-processing time vs. multiprocessing times for invoking a worker function, fn, twice where the first time it only performs its internal loop 10 times (low CPU requirements) while the second time it performs its internal loop 1,000,000 times (higher CPU requirements). You can see that in the first case the multiprocessing version runs considerable slower (you can't even measure the time for the single processing run). But when we make fn more CPU-intensive, then multiprocessing achieves gains over the single-processing case.
from multiprocessing import Pool from functools import partial import time def fn(iterations, x): the_sum = x for _ in range(iterations): the_sum += x return the_sum # required for Windows: if __name__ == '__main__': for n_iterations in (10, 1_000_000): # single processing time: t1 = time.time() for x in range(1, 20): fn(n_iterations, x) t2 = time.time() # multiprocessing time: worker = partial(fn, n_iterations) t3 = time.time() with Pool() as p: results = p.map(worker, range(1, 20)) t4 = time.time() print(f'#iterations = {n_iterations}, single processing time = {t2 - t1}, multiprocessing time = {t4 - t3}')
Prints:
#iterations = 10, single processing time = 0.0, multiprocessing time = 0.35399389266967773 #iterations = 1000000, single processing time = 1.182999849319458, multiprocessing time = 0.5530076026916504
But even with a pool size of 8, the running time is not reduced by a factor of 8 (it's more like a factor of 2) due to the fixed multiprocessing overhead. When I change the number of iterations for the second case to be 100,000,000 (even more CPU-intensive), we get ...
#iterations = 100000000, single processing time = 109.3077495098114, multiprocessing time = 27.202054023742676
... which is a reduction in running time by a factor of 4 (I have many other processes running in my computer, so there is competition for the CPU).
folderStatisticsfunction is meant to do? I've got the feeling that the problem is in the implementation of this method. Have you tried running it in a single-threaded fashion?worker = partial(folderStatistic)is not accomplishing anything of value; you might as well havepool.map(folderStatistic, enumerate(get_directories())).