I'm trying to run a demo of TF Object Detection model with Faster RCNN on Google Colab Pro GPU (RAM: 25GB, Disk: 147GB), but it fails and gives me the following error:
Tensorflow/core/common_runtime/bfc_allocator.cc:456] Allocator (GPU_0_bfc) ran out of memory trying to allocate 7.18GiB (rounded to 7707033600)requested by op MultiLevelMatMulCropAndResize/MultiLevelRoIAlign/AvgPool-0-TransposeNHWCToNCHW-LayoutOptimizer If the cause is memory fragmentation maybe the environment variable 'TF_GPU_ALLOCATOR=cuda_malloc_async' will improve the situation. Then it gives me these stats:
I tensorflow/core/common_runtime/bfc_allocator.cc:1058] Sum Total of in-use chunks: 7.46GiB I tensorflow/core/common_runtime/bfc_allocator.cc:1060] total_region_allocated_bytes_: 15034482688 memory_limit_: 16183459840 available bytes: 1148977152 curr_region_allocation_bytes_: 8589934592 I tensorflow/core/common_runtime/bfc_allocator.cc:1066] Stats: Limit: 16183459840 InUse: 8013051904 MaxInUse: 8081602560 NumAllocs: 6801 MaxAllocSize: 7707033600 Reserved: 0 PeakReserved: 0 LargestFreeBlock: 0 And
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[2400,1024,28,28] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node MultiLevelMatMulCropAndResize/MultiLevelRoIAlign/AvgPool-0-TransposeNHWCToNCHW-LayoutOptimizer}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. [Op:__inference__dummy_computation_fn_32982] I don't really understand why it runs out of memory allocating only 7GB on a 25GB system? How can I fix it? Here is my config file for this task:
# Faster R-CNN with Resnet-50 (v1) # Trained on COCO, initialized from Imagenet classification checkpoint # Achieves -- mAP on COCO14 minival dataset. # This config is TPU compatible. model { faster_rcnn { num_classes: 7 image_resizer { keep_aspect_ratio_resizer { min_dimension: 640 max_dimension: 640 pad_to_max_dimension: true } } feature_extractor { type: 'faster_rcnn_resnet50_keras' batch_norm_trainable: true } first_stage_anchor_generator { grid_anchor_generator { scales: [0.25, 0.5, 1.0, 2.0] aspect_ratios: [0.5, 1.0, 2.0] height_stride: 16 width_stride: 16 } } first_stage_box_predictor_conv_hyperparams { op: CONV regularizer { l2_regularizer { weight: 0.0 } } initializer { truncated_normal_initializer { stddev: 0.01 } } } first_stage_nms_score_threshold: 0.0 first_stage_nms_iou_threshold: 0.7 first_stage_max_proposals: 300 first_stage_localization_loss_weight: 2.0 first_stage_objectness_loss_weight: 1.0 initial_crop_size: 14 maxpool_kernel_size: 2 maxpool_stride: 2 second_stage_box_predictor { mask_rcnn_box_predictor { use_dropout: false dropout_keep_probability: 1.0 fc_hyperparams { op: FC regularizer { l2_regularizer { weight: 0.0 } } initializer { variance_scaling_initializer { factor: 1.0 uniform: true mode: FAN_AVG } } } share_box_across_classes: true } } second_stage_post_processing { batch_non_max_suppression { score_threshold: 0.0 iou_threshold: 0.6 max_detections_per_class: 100 max_total_detections: 300 } score_converter: SOFTMAX } second_stage_localization_loss_weight: 2.0 second_stage_classification_loss_weight: 1.0 use_static_shapes: true use_matmul_crop_and_resize: true clip_anchors_to_image: true use_static_balanced_label_sampler: true use_matmul_gather_in_matcher: true } } train_config: { batch_size: 8 sync_replicas: true startup_delay_steps: 0 replicas_to_aggregate: 8 num_steps: 25000 optimizer { momentum_optimizer: { learning_rate: { cosine_decay_learning_rate { learning_rate_base: .04 total_steps: 25000 warmup_learning_rate: .013333 warmup_steps: 2000 } } momentum_optimizer_value: 0.9 } use_moving_average: false } fine_tune_checkpoint_version: V2 fine_tune_checkpoint: "faster_rcnn_resnet50_v1_640x640_coco17_tpu-8/checkpoint/ckpt-0" fine_tune_checkpoint_type: "detection" data_augmentation_options { random_horizontal_flip { } } max_number_of_boxes: 100 unpad_groundtruth_tensors: false use_bfloat16: true # works only on TPUs } train_input_reader: { label_map_path: "label_map.pbtxt" tf_record_input_reader { input_path: "train.record" } } eval_config: { metrics_set: "coco_detection_metrics" use_moving_averages: false batch_size: 1; } eval_input_reader: { label_map_path: "label_map.pbtxt" shuffle: false num_epochs: 1 tf_record_input_reader { input_path: "test.record" } }