I am trying to calculate cumsum for last 3 months for each row level. So, my main data frame looks like this
| ID | Month | Level_1 |
|---|---|---|
| 1 | AUG_15 | 1 |
| 1 | SEP_15 | 0 |
| 1 | OCT_15 | 1 |
| 1 | NOV_15 | 1 |
| 1 | DEC_15 | 0 |
| 1 | JAN_16 | 1 |
| 1 | FEB_16 | 1 |
| 1 | MAR_16 | 1 |
| 2 | AUG_15 | 1 |
| 2 | SEP_15 | 1 |
| 2 | OCT_15 | 1 |
| 2 | NOV_15 | 1 |
| 2 | DEC_15 | 1 |
| 2 | JAN_16 | 1 |
| 2 | FEB_16 | 1 |
| 2 | MAR_16 | 1 |
and my resultant desired output is
| ID | Month | Level_1 | Level_1_m3 |
|---|---|---|---|
| 1 | AUG_15 | 1 | 1 |
| 1 | SEP_15 | 0 | 1 |
| 1 | OCT_15 | 1 | 2 |
| 1 | NOV_15 | 1 | 2 |
| 1 | DEC_15 | 0 | 2 |
| 1 | JAN_16 | 1 | 2 |
| 1 | FEB_16 | 1 | 2 |
| 1 | MAR_16 | 1 | 3 |
| 2 | AUG_15 | 1 | 1 |
| 2 | SEP_15 | 1 | 2 |
| 2 | OCT_15 | 1 | 3 |
| 2 | NOV_15 | 1 | 3 |
| 2 | DEC_15 | 1 | 3 |
| 2 | JAN_16 | 1 | 3 |
| 2 | FEB_16 | 1 | 3 |
| 2 | MAR_16 | 1 | 3 |
so, basically the m3 columns looks at last three months from a particular and calculate cumsum. e.g. for Id 1 and month Mar_16, cumsum value is 3 as it is calculated using values of Mar_16, Feb_16 and Jan_16.
Is there are builtin method that can help achieve this in pandas?