My lab needed to solve this problem as well, and we used Tensorflow. Here's a full app implementation for visualizing image similarity.
For a tutorial on vectorizing images for similarity computation, check out this page. Here's the Python (again, see the post for full workflow):
from __future__ import absolute_import, division, print_function """ This is a modification of the classify_images.py script in Tensorflow. The original script produces string labels for input images (e.g. you input a picture of a cat and the script returns the string "cat"); this modification reads in a directory of images and generates a vector representation of the image using the penultimate layer of neural network weights. Usage: python classify_images.py "../image_dir/*.jpg" """ # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Simple image classification with Inception. Run image classification with Inception trained on ImageNet 2012 Challenge data set. This program creates a graph from a saved GraphDef protocol buffer, and runs inference on an input JPEG image. It outputs human readable strings of the top 5 predictions along with their probabilities. Change the --image_file argument to any jpg image to compute a classification of that image. Please see the tutorial and website for a detailed description of how to use this script to perform image recognition. https://tensorflow.org/tutorials/image_recognition/ """ import os.path import re import sys import tarfile import glob import json import psutil from collections import defaultdict import numpy as np from six.moves import urllib import tensorflow as tf FLAGS = tf.app.flags.FLAGS # classify_image_graph_def.pb: # Binary representation of the GraphDef protocol buffer. # imagenet_synset_to_human_label_map.txt: # Map from synset ID to a human readable string. # imagenet_2012_challenge_label_map_proto.pbtxt: # Text representation of a protocol buffer mapping a label to synset ID. tf.app.flags.DEFINE_string( 'model_dir', '/tmp/imagenet', """Path to classify_image_graph_def.pb, """ """imagenet_synset_to_human_label_map.txt, and """ """imagenet_2012_challenge_label_map_proto.pbtxt.""") tf.app.flags.DEFINE_string('image_file', '', """Absolute path to image file.""") tf.app.flags.DEFINE_integer('num_top_predictions', 5, """Display this many predictions.""") # pylint: disable=line-too-long DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' # pylint: enable=line-too-long class NodeLookup(object): """Converts integer node ID's to human readable labels.""" def __init__(self, label_lookup_path=None, uid_lookup_path=None): if not label_lookup_path: label_lookup_path = os.path.join( FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt') if not uid_lookup_path: uid_lookup_path = os.path.join( FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt') self.node_lookup = self.load(label_lookup_path, uid_lookup_path) def load(self, label_lookup_path, uid_lookup_path): """Loads a human readable English name for each softmax node. Args: label_lookup_path: string UID to integer node ID. uid_lookup_path: string UID to human-readable string. Returns: dict from integer node ID to human-readable string. """ if not tf.gfile.Exists(uid_lookup_path): tf.logging.fatal('File does not exist %s', uid_lookup_path) if not tf.gfile.Exists(label_lookup_path): tf.logging.fatal('File does not exist %s', label_lookup_path) # Loads mapping from string UID to human-readable string proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() uid_to_human = {} p = re.compile(r'[n\d]*[ \S,]*') for line in proto_as_ascii_lines: parsed_items = p.findall(line) uid = parsed_items[0] human_string = parsed_items[2] uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID. node_id_to_uid = {} proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() for line in proto_as_ascii: if line.startswith(' target_class:'): target_class = int(line.split(': ')[1]) if line.startswith(' target_class_string:'): target_class_string = line.split(': ')[1] node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string node_id_to_name = {} for key, val in node_id_to_uid.items(): if val not in uid_to_human: tf.logging.fatal('Failed to locate: %s', val) name = uid_to_human[val] node_id_to_name[key] = name return node_id_to_name def id_to_string(self, node_id): if node_id not in self.node_lookup: return '' return self.node_lookup[node_id] def create_graph(): """Creates a graph from saved GraphDef file and returns a saver.""" # Creates graph from saved graph_def.pb. with tf.gfile.FastGFile(os.path.join( FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') def run_inference_on_images(image_list, output_dir): """Runs inference on an image list. Args: image_list: a list of images. output_dir: the directory in which image vectors will be saved Returns: image_to_labels: a dictionary with image file keys and predicted text label values """ image_to_labels = defaultdict(list) create_graph() with tf.Session() as sess: # Some useful tensors: # 'softmax:0': A tensor containing the normalized prediction across # 1000 labels. # 'pool_3:0': A tensor containing the next-to-last layer containing 2048 # float description of the image. # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG # encoding of the image. # Runs the softmax tensor by feeding the image_data as input to the graph. softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') for image_index, image in enumerate(image_list): try: print("parsing", image_index, image, "\n") if not tf.gfile.Exists(image): tf.logging.fatal('File does not exist %s', image) with tf.gfile.FastGFile(image, 'rb') as f: image_data = f.read() predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) ### # Get penultimate layer weights ### feature_tensor = sess.graph.get_tensor_by_name('pool_3:0') feature_set = sess.run(feature_tensor, {'DecodeJpeg/contents:0': image_data}) feature_vector = np.squeeze(feature_set) outfile_name = os.path.basename(image) + ".npz" out_path = os.path.join(output_dir, outfile_name) np.savetxt(out_path, feature_vector, delimiter=',') # Creates node ID --> English string lookup. node_lookup = NodeLookup() top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1] for node_id in top_k: human_string = node_lookup.id_to_string(node_id) score = predictions[node_id] print("results for", image) print('%s (score = %.5f)' % (human_string, score)) print("\n") image_to_labels[image].append( { "labels": human_string, "score": str(score) } ) # close the open file handlers proc = psutil.Process() open_files = proc.open_files() for open_file in open_files: file_handler = getattr(open_file, "fd") os.close(file_handler) except: print('could not process image index',image_index,'image', image) return image_to_labels def maybe_download_and_extract(): """Download and extract model tar file.""" dest_directory = FLAGS.model_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory) def main(_): maybe_download_and_extract() if len(sys.argv) < 2: print("please provide a glob path to one or more images, e.g.") print("python classify_image_modified.py '../cats/*.jpg'") sys.exit() else: output_dir = "image_vectors" if not os.path.exists(output_dir): os.makedirs(output_dir) images = glob.glob(sys.argv[1]) image_to_labels = run_inference_on_images(images, output_dir) with open("image_to_labels.json", "w") as img_to_labels_out: json.dump(image_to_labels, img_to_labels_out) print("all done") if __name__ == '__main__': tf.app.run()