Here are some exerpts from Lu, Plataniotis and Venetsanopoulos 2006.
Let $\{ \mathcal{A}_m, m=1,\cdots, M \}$ be a set of $M$ tensor samples in $\mathbb{R}^{I_1} \otimes \mathbb{R}^{I_2} \otimes \cdots \mathbb{R}^{I_N}$. The total scatter of these tensors is defined as: $\Psi_{\mathcal{A}} = \sum_{m=1}^M \vert| \mathcal{A}_m - \bar{\mathcal{A}} \vert|_F^2$, where $\bar{\mathcal{A}}$ is the mean tensor calculated as $\bar{\mathcal{A}} = \frac{1}{M} \sum_{m=1}^M \mathcal{A}_m$. The $n$-mode total scatter matrix of these samples is then defined as: $\mathbf{S}_{T_{\mathcal{A}}}^{(n)} = \sum_{m=1}^M (\mathbf{A}_{m(n)} - \bar{\mathbf{A}_{(n)}}) (\mathbf{A}_{m(n)} - \bar{\mathbf{A}_{(n)}})^T$, where $\mathbf{A}_{m(n)}$ is the $n$-node unfolded matrix of $\mathcal{A}_m$. The statement above leads to the following formal definition of the problem to be solved:
A set of $M$ tensor objects $\{ \chi_1, \chi_2, \cdots, \chi_M \}$ is available for training. Each tensor object $\chi_m \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ assumes values in a tensor space $\mathbb{R}^{I_1} \otimes \mathbb{R}^{I_2} \otimes \cdots \mathbb{R}^{I_N}$, where $I_n$ is the $n$-mode dimension of the tensor. The MPCA objective is to define a multilinear transformation $\{ \tilde{\mathbf{U}}^{(n)} \in \mathbb{R}^{I_n \times P_n, n = 1, \cdots, N} \}$ that maps the original tensor space $\mathbb{R}^{I_1} \otimes \mathbb{R}^{I_2} \otimes \cdots \mathbb{R}^{I_N}$ into a tensor subspace $\mathbb{R}^{P_1} \otimes \mathbb{R}^{P_2} \otimes \cdots \mathbb{R}^{P_N}$ (with $P_n < I_n$, for $n=1,\cdots,N$): $\mathcal{Y}_m = \chi_m \times _1\tilde{\mathbf{U}}^{(1)^T} \times _2\tilde{\mathbf{U}}^{(2)^T} \cdots \times _N \tilde{\mathbf{U}}^{(N)^T}$, $m=1, \cdots, M$, such that $\{ \mathcal{Y}_m \in \mathbb{R}^{P_1} \otimes \mathbb{R}^{P_2} \otimes \cdots \mathbb{R}^{P_N}, m=1, \cdots, M \}$ captures most of the variation observed in the original tensor objects, assuming that these variation are measured by the total scatter.
In other words, the MPCA objective is the determination of the $N$ projection matrices $\{ \tilde{\mathbf{U}}^{(n)} \in \mathbb{R}^{I_n \times P_n}, n=1,\cdots,N \}$ that maximizes the total tensor scatter $\Psi_{\mathcal{Y}}$: $$\{ \tilde{\mathbf{U}}^{(n)}, n=1, \cdots, N \} = \arg\max_{\tilde{\mathbf{U}^{(1)}}, \tilde{\mathbf{U}^{(2)}}, \cdots, \tilde{\mathbf{U}^{(N)}}} \Psi_{\mathcal{Y}}.$$
I guess this technically answers the question, but I am going to have to ruminate on this some more.